

Algebra II - Groups & Rings Summary

Part I - Groups

Chapter 1 - Groups

① Def (Group): $\text{Group } (G, *)$ is a set together w/ a binary operation $*: G \times G \rightarrow G$ such that

- ① $g, h \in G \Rightarrow g * h \in G$
- ② $(g * h) * k = g * (h * k) \quad \forall g, h, k \in G$
- ③ $\exists e \in G \text{ s.t. } g * e = e * g = g \quad \forall g \in G$
- ④ $\forall g \in G \exists g^{-1} \text{ s.t. } g * g^{-1} = g^{-1} * g = e$
- ⑤ If G is abelian, then we also require $\forall g, h \in G \quad g * h = h * g$

[closure]
[associativity]
[identity]
[inverse]
[commutativity]

② Elementary properties of a group G :

- Cancellation law $\forall g, h, k \in G \quad g * h = g * k = \dots = h = k$
- unique identity & inverse $\forall g \in G \quad \exists g^{-1} \text{ s.t. } g * g^{-1} = g^{-1} * g = e$
- $(gh)^{-1} = h^{-1}g^{-1}$ Proof: just consider $(h^{-1}g^{-1})(gh)$ & associativity

③ Def (The order of a group): $|G|$ is # elements in G .

④ Def (order of an element): $g \in G$. $|g|$ is the least integer $n > 0$ s.t. $g^n = e$.
If n doesn't exist, $|g| = \infty$.

⑤ Def (Cyclic Group): G cyclic $\Leftrightarrow \exists g \in G$ s.t. $\forall h \in G \exists k \in \mathbb{Z}$ s.t. $g^k = h$.
 g is a generator of G .

⑥ Def (Isomorphism): $\phi: G \rightarrow H$ is a bijection from group G to H
such that $\phi(g_1 * g_2) = \phi(g_1) * \phi(g_2) \quad \forall g_1, g_2 \in G$. $G \cong H$ if a ϕ exists.
Note: $\phi(1_G) = 1_H$ and $\phi(g^{-1}) = \phi(g)^{-1} \quad \forall g \in G$

↙ v useful to show two groups not isomorphic

⑦ Prop (order preserved under isomorphism): $\phi: G \rightarrow H$ isomorphism, then
 $|g| = |\phi(g)| \quad \forall g \in G$ (H has 4 elements order 2, then ϕ would be)

finite [Proof: If $|g| = n$ (finite), $\phi(g)^n = \phi(g^n) = \phi(1_G) = 1_H \Rightarrow |\phi(g)| \leq n$ could let $m = |\phi(g)|$, then $\phi(g^m) = \phi(g)^m = 1_H = \phi(1_G) \Rightarrow g^m = 1_G \Rightarrow |g| \leq m$ be multiple
Hence $|\phi(g)| \leq |g| \leq |\phi(g)| \Rightarrow |\phi(g)| = |g|$]

infinite [If $|g| = \infty$, g^k distinct for $k \in \mathbb{Z}$, ϕ bijection so $\phi(g^k) = \phi(g)^k$ distinct
 $\forall k \in \mathbb{Z}$ so $|h| = \infty$]

⑧ Def (Symmetric Group): X a set, $\text{Sym}(X) = \{ \text{permutations on } X \} = \{ \text{bijections } X \rightarrow X \}$
a cycle (a_1, \dots, a_n) is a permutations $\phi \in \text{Sym}(X)$ s.t. $\phi(a_i) = a_{i+1}$, $\phi(a_n) = a_1$, $\phi(b) = b$
 $\forall b \in X \setminus \{a_1, \dots, a_n\}$.
Note: If $|X| = |Y|$, then $\text{Sym}(X) \cong \text{Sym}(Y)$

⑨ Def (Dihedral Group): $D_n = \{ \text{isometries of an } n\text{-sided polygon in the plane} \}$
let a be a rotation by $\frac{2\pi}{n}$, b a reflection, then we see that
 $G = \{ a^k \mid 0 \leq k < n \} \cup \{ a^k b \mid 0 \leq k < n \}$
Note: $ba = a^{-1}b = a^{-1}b = a^{-1}b$, $ba^k = a^{-k}b$, $a^n = 1$, $b^2 = 1$

Chapter 2 - Subgroups

(10) Def (Subgroup): $H \subseteq G$ is a subgroup if it forms a group under the same operations as G . write $H \leq G$. Note: $1_H = 1_G$

(11) Lem (Subgroup criterion): $H \leq G \iff$

- (i) $h_1, h_2 \in H \Rightarrow h_1 h_2 \in H$ [closure]
- (ii) $h \in H \Rightarrow h^{-1} \in H$ [inverse]

Note: $\{1\}$ is the trivial subgroup, G is also a subgroup.
Proper subgroups - excludes G , non-trivial subgroups - excludes $\{1\}$

(12) Def (transposition): If $G = \text{Sym}(X)$, then every permutation σ can be written as a product of disjoint cycles. A transposition is a cycle of length 2. So any permutation can be written as a product of transpositions. A permutation is even & odd if product of even or odd # of transpositions. (Can't be both even & odd)

$\Rightarrow A_n = \{ \sigma \in \text{Sym}(n) : \sigma \text{ even} \}$

(13) Lem (intersection of subgroups): G group. If $H \leq G$, $k \in G \Rightarrow H \cap k \leq G$
Let $H \leq G$ account here... [H subgroup of G]

(14) Def (cosets): let $g \in G$, left coset $gH = \{gh : h \in H\}$, same for right coset.

(15) Prop (technical coset criterion): Following equivalent for $g, k \in G$

- (i) $k \in gH$
- (ii) $gH = kH$
- (iii) $g^{-1}k \in H$

so cosets partition G up

(16) Prop (cosets equal or disjoint): Two left cosets g_1H, g_2H equal or disjoint.
Pf: If $g_1H \cap g_2H \neq \emptyset \Rightarrow \exists k \text{ s.t. } k \in g_1H \cap g_2H \Rightarrow g_1H = kH = g_2H$

(17) Prop (cosets have same size): If H finite, then all left cosets have size $|H|$.
Pf: As $g_1h_1 = g_2h_2 \Rightarrow h_1 = h_2$, then $\phi: H \rightarrow g_1H$ w/ $\phi(h) = gh_1$ is a bijection so result.

(18) Def (Index of H in G): # distinct left cosets of H in G is $[G : H]$.

(19) Thm (Lagrange's Thm): G a finite group, H a subgroup. Then $|H| \mid |G|$ or equivalently, $|G| = |H| \cdot [G : H]$
"order of G divides order of subgroup"

(20) Prop (order of element divides order of group): G finite, then $hg \in G$
 $|g|$ divides $|G|$.
Pf: Let $|g| = n$, $\{g^{tr} : t \in \mathbb{Z}\}$ is a subgroup of H . g^t all distinct
so $|H| = n$, hence $|G| = n \cdot [G : H]$ so $n \mid |G|$ by lagrange.

(21) Def (normal subgroup): we say $H \triangleleft G$ or $H \lhd G$ if left & right cosets are equal by $g \in G$, $gH = Hg \quad \forall g \in G$.

(22) Prop (index 2 \Rightarrow H normal): $H \leq G$ with $[G : H] = 2 \Rightarrow H$ normal. $H \lhd G$.
Pf: If $[G : H] = 2$, only two distinct cosets. so as cosets partition G , they are H and $G \setminus H$. Some two right cosets so for $g \in G$, if $g \in H \Rightarrow gH = Hg = H$ and if $g \notin H \Rightarrow gH = Hg = G \setminus H$. Either way $Hg = gH \Rightarrow H$ normal subgroup.

(23) Prop (test for $H \leq G$ normal): H normal in $G \Leftrightarrow ghg^{-1} \in H \ \forall g \in G, h \in H$. idea is commutativity

Chapter 3 - Classifications of Groups

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

(*)

Do proofs here: not results based!

(24) Def (Direct Product): $G \times H = \{(g, h) : g \in G, h \in H\}$ w/ $(g_1, h_1)(g_2, h_2) = \dots$ triangle 4

(25) Prop (Group of order 4 classification): $G \cong C_4$ or $G \cong C_2 \times C_2$ group

Pf: let $G = \{1, a, b, c\}$. By Lagrange, $|g| = \{1, 2, 4\}$ [can't be 1 as that element is unique]. If $|a| = 4$, then $G = \{1, a, a^2, a^3\}$ so cyclic. Otherwise $|a| = |b| = |c| = 2$. Consider ab . Cases:

- $ab = 1 \Rightarrow b = a^{-1} = a$, but $|a| = 2 \times$
- $ab = b \Rightarrow a = 1 \times$
- $ab = a \Rightarrow b = 1 \times$

so $ab = c$. Similarly $ba = c \Rightarrow a = bc$ & write multiplication table (a)

Hence classifications.

(26) Prop (Group has prime order then cyclic): $|G| = p$ prime. Then $G \cong C_p$.

Pf: let $g \neq 1 \in G$, $|g| \mid p \Rightarrow |g| = p \Rightarrow 1, g, g^2, \dots, g^{p-1}$ distinct so cyclic.

(27) Lemma (all of order two then abelian): G group s.t. $g^2 = 1 \ \forall g \in G \Rightarrow G$ abelian.

Pf: $g^2 = 1, h^2 = 1, gh \in G \Rightarrow (gh)^2 = 1 \Rightarrow ghgh = gghh \Rightarrow hg = gh$.

(28) Lemma (all order two forms subgroup): G group s.t. $g^2 = 1 \ \forall g \in G$, then a, b distinct non identity, then $\{1, a, b, ab\}$ subgroup of G of order 4.

Pf: $ab \neq b, ab \neq a, ab \neq (1 : a^2) \Rightarrow a = b \times \Rightarrow |\{1, a, b, ab\}| = 4$

Show subgroup: (i) closure: know $1 = a^2 = b^2$, $ab = 1$ so e.g. $b(ab) = bab = b$
(ii) inverse: $g^2 = 1 \Rightarrow g = g^{-1} \ \forall g \in G$ so closed.

(29) Prop (Order 6 classification): If $|G| = 6$, then $G \cong C_6$ or $G \cong D_3 \cong S_3$

Pf: By Lagrange, $|g| = \{1, 2, 3, 6\}$. If $|g| = 6 \Rightarrow G \cong C_6$ so assume no $|g| = 6$.

① If all elements order 1 or 2, then G has order 4 subgroup, contradicting Lagrange. \Rightarrow There must be an order 3 element. prop 22 partition in two.

② If $|a| = 3$, then $N = \{1, a, a^2\}$ has index 2 in $G \Rightarrow$ normal subgroup. Pick $b \in G \setminus N$, then $G = \{1, a, a^2, b, ab, a^2b\}$

③ What can b^2 be?

- $b^2 = b \Rightarrow b = 1 \times$
- $b^2 = ab \Rightarrow b = a \times$
- $b^2 = a^2b \Rightarrow b = a^2 \in N \times \overset{a}{\atop}$
- $b^2 = a \Rightarrow b^3 = ab, b^4 = ab^2 = a^2, b^5 = a^2b$ all not 1 $\Rightarrow |b| = 6 \times$
- $b^2 = a^2 \Rightarrow \dots \Rightarrow |b| = 6 \times$

$\Rightarrow b^2 = 1$ [only choice to avoid contradiction]

④ What can bab^{-1} be? [N is normal so $bab^{-1} \in N$]

- $bab^{-1} = 1 \Rightarrow a = 1 \times$
- $bab^{-1} = a \Rightarrow ba = ab \Rightarrow (ab)^2 = a^2b^2 = a^2, (ab)^3 = b, (ab)^4 = a, (ab)^5 = a^2b, (ab)^6 = a \times$

$\Rightarrow bab^{-1} = a^2 \Rightarrow ba = a^2b \Rightarrow$ complete multiplication table & $G \cong D_3 \times$

(30) Def (generators/words): $\{g_1, \dots, g_r\} \subset G$ generate G if every element in G can be obtained by repeated multiplication by g_i and inverses. [expression is a word in the generators & their inverses. If you write down enough relations between words can classify groups upto isomorphism.]

(31) Prop (Generators for D_n): $|G|=2n$, generated by a, b satisfying $a^n=1$, $b^2=1$, $ba=a^{-1}b$, then $G \cong D_n$
Pf: mass around w/ relations.

(32) Prop (Generators for $C_n \times C_m$): $|G|=mn$ generated by a, b satisfying $a^m=1$, $b^n=1$, $ab=ba$. Then $G \cong C_n \times C_m$

(33) Prop (Generators for Q_8): let G be $|G|=8$, generated by a, b satisfying $a^4=1$, $b^2=a^2$, $ba=a^{-1}b$. Then $G \cong Q_8$ very more complicated than abelian groups case where nice form does it

(34) Prop (classifying order 8): $|G|=8$, then G isomorphic to one of C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$, D_4 , Q_8
Pf: Similar to order 6 case but 5 isomorphism classes, not two.

Chapter 4 - Homomorphisms & Quotient Groups

n	Groups of order n
1	$\{0\}$
2	C_2
3	C_3
4	$C_4, C_2 \times C_2$
5	C_5
6	$C_6, D_3 \cong S_3$
7	C_7
8	$C_8, C_4 \times C_2, C_2 \times C_2 \times C_2, D_4, Q_8$

(35) Lemm (coset element multiplication): Let $N \trianglelefteq G$, $g, h \in G$,
 Then if $p \in gN$, $q \in hN$, then $pq \in ghN$
Pf: $gn \in gN$, $hn \in hN$. Know $gN = Ng$ so $n, h = hn_3$ for $n_3 \in N$, so $(gn)(hn_3) = g(n, h)n_2 = g(hn_3)n_2 \in ghN$

(36) Lemm (normal coset multiplication): $N \trianglelefteq G$, gN, hN cosets, then $(gN)(hN) = (gh)N$.
Quotient Group / Factor Group of G by N .

(37) Thm (G/N forms a group): Let N be a normal subgroup of G . Then G/N (set of left cosets of N) forms a group under multiplication of sets.
Pf: ① Saw that $(gN)(hN) = ghN$ so have closure.

② associativity follows from associativity of G .

③ $(1N)gN = 1gN = gN = (gN)(1N)$ & $g \in G$ so $1N$ is identity.

④ $(g^{-1}N)(gN) = (gg^{-1})N = 1N$, $g^{-1}N$ is the inverse to gN for each coset \Rightarrow # left cosets = size of quotient group

Note: G finite $\Rightarrow |G/N| = [G:N] = |G|/|N|$. So if N exists can split up $G \xrightarrow{G/N} N$

(38) Def (Homomorphisms): Let G, H be groups. A homomorphism ϕ from G to H is a map $\phi: G \rightarrow H$ s.t. $\phi(gh) = \phi(g)\phi(h)$ $\forall g, h \in G$

- injective homomorphism (monomorphism) has $\phi(g) = \phi(h) \Rightarrow g = h$
- surjective " (epimorphism) has $\text{Im}(\phi) = H$
- Isomorphism is a bijective homomorphism.

Note: $\phi(1_G) = 1_H$ & $\phi(g^{-1}) = \phi(g)^{-1}$ $\forall g \in G$.

(39) Def (Kernel of a homomorphism): $\text{ker}(\phi) = \{g \in G : \phi(g) = 1_H\}$

(40) Prop (ϕ injective $\Leftrightarrow \text{ker}(\phi) = \{1_G\}$): $\phi: G \rightarrow H$ a homomorphism.

Pf: \Rightarrow $1_G \in \text{ker}(\phi)$. As ϕ injective $\Rightarrow \text{ker}(\phi) = \{1_G\}$.

\Leftarrow Suppose $\text{ker}(\phi) = \{1_G\}$. Pick $g_1, g_2 \in G$ w/ $\phi(g_1) = \phi(g_2)$
 Then $1_H = \phi(g_1)^{-1}\phi(g_2) = \phi(g_1^{-1}g_2) \Rightarrow g_1^{-1}g_2 = 1_G \Rightarrow g_1 = g_2 \Rightarrow$

(41) Thm ($\text{ker}(\phi)$ is normal & natural / canonical homomorphism def):

(i) let $\phi: G \rightarrow H$ be a homomorphism. Then $\text{ker}(\phi)$ is normal in G .

(ii) let $N \trianglelefteq G$, Then $\pi: G \rightarrow G/N$ defined by $\pi(g) = gN$ is a homomorphism with kernel N .

Pf: (i) $1_G \in \text{ker}(\phi)$ so non-empty. Pick $g_1, g_2 \in \text{ker}(\phi)$. Note that $\phi(g_1 g_2) = \phi(g_1) \phi(g_2) = 1_H 1_H = 1_H \Rightarrow g_1 g_2 \in \text{ker}(\phi)$ [closure]
 $\phi(g_1^{-1}) = \phi(g_1)^{-1} = 1_H^{-1} = 1_H \Rightarrow g_1^{-1} \in \text{ker}(\phi)$ [inverse]
If $g \in G$, $h \in \text{ker}(\phi)$, then $\phi(g h g^{-1}) = \phi(g) \phi(h) \phi(g)^{-1} = 1_H$
so $g h g^{-1} \in \text{ker}(\phi)$ so $\text{ker}(\phi)$ normal.

(ii) For $a, b \in G$, $\pi(ab) = abN = (aN)(bN) = \pi(a)\pi(b)$ so $\pi: G \rightarrow G/N$ is a homomorphism. Take $xN \in G/N$, then $xN = \pi(x)$ so π surjective
 $\pi(g) = 1_{G/N} \Leftrightarrow gN = 1_G N \Leftrightarrow g \in N$ so $\text{ker}(\pi) = N$

(42) Prop (image of a homomorphism is a subgroup): $\phi: G \rightarrow H$ homomorphism, then $\text{im}(\phi)$ is a subgroup.

(43) Thm (First Isomorphism Theorem): Let $\phi: G \rightarrow H$ be a homomorphism, then $G/\text{ker}(\phi) \cong \text{im}(\phi)$. Precisely, \exists isomorphism $\bar{\phi}: G/\text{ker}(\phi) \rightarrow \text{im}(\phi)$ defined by $\bar{\phi}(g\text{ker}) = \phi(g)$ $\forall g \in G$ [$\text{ker} = \text{ker}(\phi)$]

Pf: Hard part is checking the map is well defined. Do we really have a map from $\bar{\phi}: G/\text{ker} \rightarrow \text{im}(\phi)$? We can have $g\text{ker} = h\text{ker}$ for $g \neq h$ and need $\phi(g) = \phi(h)$

(44) Thm (Second Isomorphism Theorem): G group, H a subgroup, ker normal subgroup
(i) $H\text{ker} = \text{ker}H$ is a subgroup of G $[AB = \{ab \mid a \in A, b \in B\}]$
(ii) $H \cap \text{ker}$ is a normal subgroup of H
(iii) $H/(H \cap \text{ker}) \cong H\text{ker}/\text{ker}$

(45) Thm (Third Isomorphism Theorem): Let $\text{ker} \subseteq H \subseteq G$ where ker, H normal subgroups of G :

- (i) ker is a normal subgroup of H
- (ii) H/ker is a normal subgroup of G/ker
- (iii) $(G/\text{ker})/(H/\text{ker}) \cong G/H$

Chapter 5 - Group Actions

$GL(n, \mathbb{R})$ acts on \mathbb{R}^n by $g \cdot x = gx$ {multiply matrix by a vector}

(46) Def (The action of a group on a set): Let G be a group, X a set. An action of G on X is a map $\cdot: G \times X \rightarrow X$ such that

- A1: $1_G \cdot x = x \quad \forall x \in X$
- A2: $(gh) \cdot x = g \cdot (h \cdot x) \quad \forall g, h \in G, x \in X$

useful to set up a homomorphism to use in 1st isom

(47) Prop (if G acts on X , there is a homomorphism between G and $\text{Sym}(X)$): Let \cdot be an action of the group G on the set X . For $g \in G$, define $\phi(g): X \rightarrow X$ by $\phi(g)(x) = g \cdot x$. Then $\phi(g) \in \text{Sym}(X)$ and $\phi: G \rightarrow \text{Sym}(X)$ is a homomorphism.

(48) Def (Kernel of an action): The kernel of an action \cdot of G on X is the $\text{ker} = \text{ker}(\phi)$ where $\phi: G \rightarrow \text{Sym}(X)$ from (47)

$$\text{ker} = \{g \in G \mid g \cdot x = x \quad \forall x \in X\}$$

$$\cdot: G \times X \rightarrow X$$

An action is faithful if $\text{ker} = \{1\}$

(49) Thm (Every group is isomorphic to a permutations group): $G \cong H \subset \text{Sym}(X)$
Pf: For a faithful action, $\phi: G \rightarrow \text{Sym}(X)$ is a homomorphism and
 $\text{ker } \phi = \{1\}$, so by 1st isomorphism thm, $G \cong G/\text{ker } \phi \cong \text{im}(\phi) \subset \text{Sym}(X)$
 Because $\phi: G \rightarrow \text{Sym}(X)$ so $\text{im}(\phi) \subset \text{Sym}(X)$ and $\text{ker } \phi = 1$ so $G \cong G/\text{ker } \phi$
 "fix x & cycle through G "

(50) Def (Orbit of G on X): let \cdot be an action of G group on X set. Then
 $G \cdot x = \text{Orb}_G(x) = \{y \in X : \exists g \in G \text{ s.t. } g \cdot x = y\} = \{g \cdot x : g \in G\} \subset X$
Note: Define relation $x \sim y \Leftrightarrow \exists g \in G \text{ s.t. } g \cdot x = y$, then the equivalence
 classes of \sim are the orbits of G on X
 An action is **transitive** if it has only a single orbit.

(51) Def (Stabiliser of x in G): let G act on X , $x \in X$, then the stabiliser
 of x in G is $\text{Stab}_G(x) = \{g \in G : g \cdot x = x\} \subset G$ ← subset of G that leaves x fixed.

(52) Prop (Stabiliser is a subgroup): let G act on X , $x \in X$, then
 (i) $\text{Stab}_G(x)$ subgroup of G
 (ii) $\bigcap_{x \in X} \text{Stab}_G(x)$ is the kernel of action G on X .
Pf: $\forall x \in X$

(53) Thm (Orbit Stabiliser Theorem): Let G be a finite group acting on X . Let
 $x \in X$. Then $|G| = |\text{Orb}_G(x)| \times |\text{Stab}_G(x)|$

Proof: let $y \in \text{Orb}_G(x)$, then $\exists g \in G$ s.t. $g \cdot x = y$. Set $H = \text{Stab}_G(x)$
 For $g' \in G$

$$g' \cdot x = y \Leftrightarrow g' \cdot x = g \cdot x \Leftrightarrow g' \cdot g^{-1} \cdot x = x \Leftrightarrow g' \cdot g^{-1} \in H \Leftrightarrow g' \in gH$$

Then $g' \in G$ s.t. $g' \cdot x = y$ are elements in one coset of H , but we know
 $|H| = |\text{Stab}_G(x)|$ so by $y \in \text{Orb}_G(x)$, there are $|H|$ elements $g' \in G$ with
 $g' \cdot x = y$ so total # $y \in \text{Orb}_G(x)$ is $|G|/|H|$, hence result. conjugation

(54) Def (Conjugation / centralisers): Action of G on $X = G$, $g \cdot x = g \circ x \circ g^{-1}$, $x, g \in G$
 (A) orbits (conjugacy classes of G). (B) stabiliser for conjugation? (centraliser)

orbit of $g \in G$ $C_G(g) = \{x \in G \mid x \circ g = g \circ x\}$
 Elements of same conjugacy class are 'conjugate'. $g, h \in G$ conjugate
 iff $\exists x \in G$ s.t. $h = x \circ g \circ x^{-1}$
 [conjugate elements have same order]

centraliser of g in G $C_G(g) = \{x \in G \mid x \circ g = g \circ x\}$
 The $x \in G$ s.t. $x \circ g = g \circ x \Leftrightarrow x \circ g \circ x^{-1} = g$
 [The x that commute with g]

(C) kernel is the center of G , $Z(G) = \{x \in G : x \circ g = g \circ x \ \forall g \in G\}$
Note: orbit-stabilises thm gives $|C_G(g)| = |G|/|C_G(g)|$ the x that commute w/ all G

(55) Conjugacy classes in Symmetric Groups

- Given g permutations in cyclic notation, conjugate $j \circ g \circ j^{-1}$ of g is $X \ni x \mapsto j(x)$
- cycle type $2^1 3^1 \dots$ for a permutations iff it has i_1 cycles of length i for $i \geq 2$.
- Two permutations are conjugate iff they have the same cycle type.
 E.g. S_3 has 3 cycle types $\{1, 2, 3\}$, S^4 has 5 $\{1, 2, 3, 4\}$

(56) Conjugacy classes in Alternating Groups: let $G = S_n$, $H = A_n$. Then we have

$$|C_H(h)| = |C_G(h)| \quad \text{or} \quad |C(C_H(h))| = \frac{1}{2} |C(C_G(h))|$$

Pf: Orbit stabil: $|C_G(h)| \cdot |C_G(h)| = |S_n| = 2|A_n| = 2|C_G(h)| \cdot |C_G(h)|$ & Lagrange.

Example: calculate conjugacy classes in A_5 ...

obviously left & right cosets equal here... ???

(57) Results relating to simple groups:

- G is simple if its only normal subgroups are G and $\{1\}$.
e.g. cyclic groups of prime order are simple. [subgroups are only order 1 or p]
- A simple abelian group is cyclic of prime order.
- Pf: guess g to generate w/ different cases.
- $H \trianglelefteq G$ normal in $G \Leftrightarrow H$ is a union of conjugacy classes of G
Pf: $H \trianglelefteq G \Leftrightarrow ghg^{-1} \in H \quad \forall g \in G, h \in H$. But this is exactly $H \trianglelefteq G \Leftrightarrow h \in H \Rightarrow C_G(h) \in H$ so result.
- Group A_5 is simple
Pf: use above & info about conjugacy classes.
(Converse to Lagrange) $|H| \mid |G|$ but does G have subgroups of all orders that $\nmid |G|$?
No: A_5 has no subgroup of order 6. $|A_5| = \frac{4!}{2} = 12$
Pf: Order 6 subgroup has index 2 so normal \Rightarrow union of conjugacy classes.
cyclic or dihedral so has an order 2 element. List & they form an order 4 subgroup
contradicting Lagrange.

n is largest power of prime
 p that divides $|G|$ so m
is not divisible by p .

(58) Sylow's Theorem

- Let G be finite grp $|G| = p^n \cdot m$. A subgroup of G of order p^n is a Sylow p -subgroup.
- (Thm) Let G be a finite group, p prime, $|G| = p^n m$, $p \nmid m$. Then
 - G has a Sylow p -subgroup. Any subgroup of G of order p^a , $1 \leq a \leq n$ is contained in a Sylow p -subgroup.
 - Any two Sylow p -subgroups are conjugate in G .
 - The number r of Sylow p -subgroups of G satisfies $r \equiv 1 \pmod{p}$ & $r \mid m$.

Note: Let $\text{Syl}_p(G) = \{H \subseteq G \mid |H| = p^n\}$ is the set of Sylow p -subgroups of G .
can show ① If $P \in \text{Syl}_p(G)$ & $g \in G$, then $gPg^{-1} \in \text{Syl}_p(G)$ [conjugation]
② $|\text{Syl}_p(G)|$ divides $m = |G|/p^n$

- If there's only one Sylow p -subgroup, then it's a normal subgroup of G
Pf: Suppose $|\text{Syl}_p(G)| = 1$ and P is the unique p -subgroup. Then $\forall g \in G$
 $gPg^{-1} \in \text{Syl}_p(G) \Rightarrow gPg^{-1} = P \Rightarrow P \trianglelefteq G$.

- Example: There's no simple groups of order 24.

Pf: Assume contrary, let G be a simple group of order $2^3 \cdot 3$

- Take $p = 2$, then G has Sylow 2-subgroups. $r_2 = |\text{Syl}_2(G)|$

Then $r_2 \equiv 1 \pmod{2}$, r_2 divides $\frac{24}{8} = 3 \Rightarrow r_2 = \{1, 3\}$

(A) If $r_2 = 1$, then unique subgroup so normal, contradiction to G simple.

(B) If $r_2 = 3$, G acts on $X = \text{Syl}_2(G)$ by conjugation. So \exists non-trivial homomorphism $\phi: G \rightarrow \text{Sym}(X)$. $|X| = 3$ so $\text{Sym}(X) \cong S_3$ so

$\phi: G \rightarrow S_3$. $\{1\} \neq \text{im}(\phi) \leq S_3$ so $1 < \text{im}(\phi) \leq 6$.

First isomorphism Thm: $\text{im}(\phi) \cong G/\ker(\phi) \Rightarrow |\ker(\phi)| = \frac{24}{6} = 4$

so $4 \leq \ker(\phi) \leq 24$ so $\ker(\phi)$ proper non-trivial normal subgroup of G contradiction G simple.

Part 2 - Rings

Chapter 6 - Rings & Subrings

(59) **Def (Ring):** A **ring** is a set R together w/ two binary operations $+$, $\cdot: R \times R \rightarrow R$

so it's **ring**

R1 - $(R, +)$ is an abelian group

R2 - $(ab)c = a(bc) \quad \forall a, b, c \in R$

R3 - $(a+b)c = ac+bc, a(b+c) = ab+ac \quad \forall a, b, c \in R$

R4 - $\exists 1 = 1_R \in R$ s.t. $1a = a = a1 \quad \forall a \in R$

[R5 - $ab = ba \quad \forall a, b \in R$]

for a commutative ring

note! No multiplicative inverse...

(additive group)

(associative multiplication)

(distributivity)

(multiplicative identity)

(commutativity)

(60) **Def (Subring):** $S \subset R$ is a **subring** if it forms a ring under same operations as R w/ same identity element.

- S is a subring of R iff
 - (a) S a subgroup of $(R, +)$
 - (b) $a_1, a_2 \in S \Rightarrow a_1 a_2 \in S$
 - (c) $1_R \in S$

Note: intersections of subrings are subrings.

Best way to prove something is a subring is to show it is a subring of a known ring...

(addition subgroup)

(multiplicative closure)

(multiplicative identity)

(61) **Def (Ring isomorphism):** $\phi: R \rightarrow S$ between two rings R & S is an **isomorphism** if

- (i) ϕ bijection
- (ii) $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2) \quad \forall r_1, r_2 \in R$
- (iii) $\phi(r_1 r_2) = \phi(r_1) \phi(r_2) \quad \forall r_1, r_2 \in R$

Here R and S are **isomorphic**. write $R \cong S$.

Note: $\phi(0_R) = 0_S, \phi(1_R) = 1_S$.

note: $a \cdot 0 = 0 \cdot a = 0$
 $(-1) \cdot a = a \cdot (-1) = -a$
 multiplicative identity unique
 $\exists 1 = 0 \Rightarrow R = \{0\}$

ordered pair w/ obvious pairness + L.

(62) **Def (Direct product):** If R & S , two rings, then $R \times S = \{(r, s): r \in R, s \in S\}$

(63) **Thm (Sun Tzu/Chinese Remainder):** Rings $\mathbb{Z}_m \times \mathbb{Z}_n$ and \mathbb{Z}_{nm} are isomorphic iff n & m coprime. ($\gcd(n, m) = 1$).

Pl: 'Let $(x)_m$ be residue of x mod m . set $\phi: \mathbb{Z}_{mn} \rightarrow \mathbb{Z}_m \times \mathbb{Z}_n$ by $\phi(x) = ((x)_m, (x)_n)$ & show isomorphism.
 \Rightarrow If $n = p_1^{a_1} \cdots p_k^{a_k}$ is a decomp of n into distinct primes, then

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{a_1}} \times \cdots \times \mathbb{Z}_{p_k^{a_k}}$$

(64) **Def (Integral domains / Fields):**

- **Zero divisors:** $a \in R \setminus \{0\}$ is a zero divisor if $\exists b \in R \setminus \{0\}$ s.t. $ab = 0$ or $ba = 0$.
- **Units:** $a \in R \setminus \{0\}$ is a unit if $\exists b \in R \setminus \{0\}$ s.t. $ab = ba = 1$
- A ring R is an **integral domain / domain** if
 - (a) R is commutative
 - (b) R non-zero
 - (c) R has no zero divisors. [If $ab = 0 \Rightarrow a = 0$ or $b = 0$]
- Units of R form a group R^* under multiplication.
- A **division ring** is a ring R s.t. $R \setminus \{0\}$ forms a group w/ multiplication
- A **field** is a commutative division ring.

Note: every field is an integral domain. [no non-zero divisors]

Suppose we have a non-zero divisor. Then $ab = 0$ with $a, b \neq 0$
 But field so have a^{-1} & b^{-1} . Then $b = 0 \rightarrow$

• For a ring, the **characteristic** is smallest $n \in \mathbb{N}$ s.t. $nx = 0 \quad \forall x \in R$. If no n , char = 0

65

Polynomials

$$3x_1^3x_2 - \frac{2}{3}x_1x_2^2 \in \mathbb{Q}[x_1, x_2]$$

- R integral domain $\Rightarrow R[x]$ is
- R integral domain \Rightarrow units of R & $R[x]$ match. or $r=0$
- Polynomial division w/ remainder: $f = qg + r$ w/ $\deg(r) < \deg(g)$
- Remainder Thm: $f = f(x) \in F[x]$, $a \in F$, $f(a) = 0 \Leftrightarrow (x-a) | f(x)$
- Polynomial of degree d has at most d roots.

useful
to prove
divisibility

F a field, then any finite subgroup of F^* [multiplicative] is cyclic.

↓
get \nexists
 $y \neq 0$

Pf: contradiction, assume G finite subgp of F^* not cyclic. By abelian gp classifn
 $G \cong C_{n_1} \times \dots \times C_{n_m}$ w/ $n_1 | n_2 | \dots | n_m$ $N = |G| = n_1 n_2 \dots n_m$. $m > 1$ as G not cyclic.
 let $n = n_m$, then write $(x_1, \dots, x_m) \in C_{n_1} \times \dots \times C_{n_m}$. Then

$$(x_1, \dots, x_m)^n = (x_1^n, \dots, x_m^n) = (1, \dots, 1) \Rightarrow g^n = 1 \quad \forall g \in G$$

Pict: $f(x) = x^n - 1 \in F[x]$. Then $N > n$ elements $a \in F$ s.t. $f(a) = 0$
 so more roots than degree! \nexists .

- P prime, then $\mathbb{Z}_p \setminus \{0\}$ is cyclic of order $p-1$ [multiplicative gp]

Chapter 7 - Ideals & Quotient Rings

[v similar to groups!]

66

Deg (Ring Homomorphism): R, S rings. $\phi: R \rightarrow S$ is a ring homo if

- (i) $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2) \quad \forall r_1, r_2 \in R$
- (ii) $\phi(r_1 r_2) = \phi(r_1) \phi(r_2) \quad \forall r_1, r_2 \in R$
- (iii) $\phi(1_R) = 1_S$

{isomorphism if also
bijections}

define as kernel
of additive groups

why? $r \in I$,
 $x \in R$,
 $\phi(xr) =$
 $\phi(x)\phi(r) = 0$
 $\therefore x \in I$
 $\Rightarrow I$ ideal.

67 Deg (Kernel & image):

$$\text{im}(\phi) = \{\phi(r) : r \in R\}$$

im(ϕ) subring of S

$$\text{ker}(\phi) = \{r \in R : \phi(r) = 0_S\}$$

ker(ϕ) is an ideal in R

68 Deg (Ideal): $I \subset R$ is an ideal if

- (i) I subgp of $(R, +)$
- (ii) $\forall x \in R, y \in I, xy \in I, yx \in I$

$$r \in I \Leftrightarrow I = R$$

ideals \neq subrings

Note: $(a) = \{ra : r \in R\}$ is the principal ideal generated by a .

69 Prop (Quotient Rings): The cosets of an ideal form a ring under addition in the quotient group. (ideals of rings are our new normal subgroups) and multiplication $(I + a)(I + b) = I + ab$

E.g. quotient ring $\mathbb{Z}/(n) \cong \mathbb{Z}_n$. Isomorphism $\phi: \mathbb{Z}_n \rightarrow \mathbb{Z}/(n)$ is $n \mapsto n + (n)$

70 Prop (Ring homomorphism): The map $\pi: R \rightarrow R/I$, $\pi(a) = a + I$ is a surjective ring homomorphism w/ kernel $\text{ker}(\pi) = I$.

71 Thm (1st iso Thm for rings): Let $\phi: R \rightarrow S$ be a ring homomorphism w/ kernel I . Then $\text{im}(\phi) \cong R/I$

Chapter 8 - Domains

ring R is an integral domain so commutative here

Recall that the principal ideals are $(a) = aR$ for $a \in R$ fixed.

72 Deg (Principal Ideal Domain): Domain R is a PID if every ideal of R is principal.

PID = "every ideal is generated by a single element."

73 Thm: For every field F , polynomial ring $F[x]$ is a PID. generated by 1 element.

Pf: Prove any ideal I in $F[x]$. If $I = \{0\} \Rightarrow I = (0)$ so principal. so prove $g \in F[x] \setminus \{0\}$. wts $I = (g)$ [the ideal is principal]

① $(g) \subseteq I$ by def. $(g) = \{ \lambda g \mid \lambda \in F[x] \}$. I an ideal so $\lambda g \in I \wedge \lambda \in F[x]$

② $I \subseteq (g)$. Why? Prove $\lambda \in I$. So $\lambda = gq + r$. [$r=0$ or $\deg(r) < \deg(g)$].
 I if $r \neq 0 \Rightarrow r = \lambda - gq \in I$. $\deg(r) < \deg(g) \Rightarrow r \in (g)$ to λ choice.
 $\text{So } r=0 \Rightarrow \lambda = gq \in (g)$ so $I \subseteq (g) \Rightarrow I = (g)$ principal.

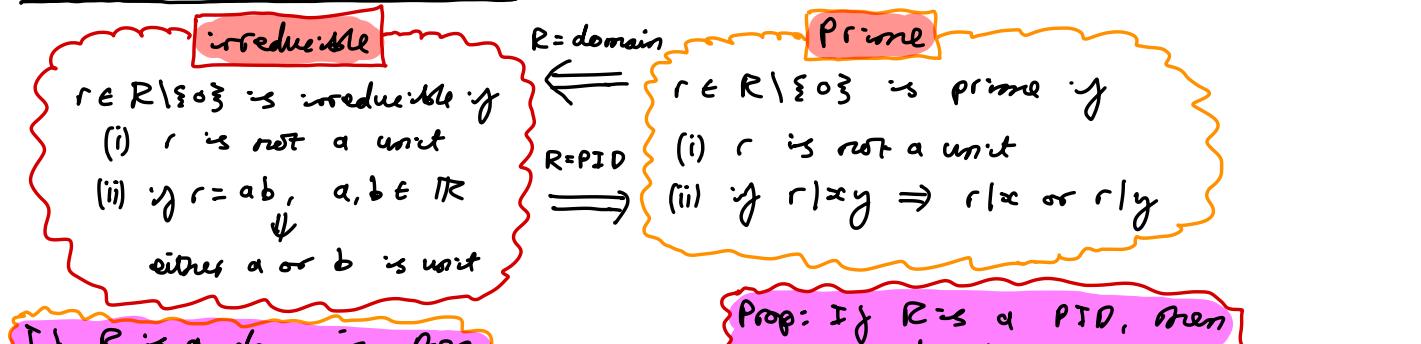
74 Divisibility in integral domains: (Generalizing divisibility in \mathbb{Z})

- $x, y \in R$, $x \mid y$ if $y = rx$ for some $r \in R$.
- Following equivalent:
 - $x \mid y$
 - $y \in (x)$
 - $(x) \supseteq (y)$
- $x, y \in R$. x, y associate $(x \sim y)$ if $x \mid y$ & $y \mid x$.
- Following equivalent:
 - $x \sim y$
 - $(y) = (x)$
 - $\exists \text{ unit } q \in R \text{ s.t. } x = qy$
- $x, y \in R$, $\gcd(x, y) = d$ s.t.
 - (i) $d \mid x$, $d \mid y$
 - (ii) if $z \in R$ w/ $z \mid x$, $z \mid y \Rightarrow z \mid d$
- Prop (Generalized Bezout's lemma): R is a PID, then $\text{lcm}(x, y)$, $\gcd(x, y)$ exist $\forall x, y \in R$ & $\exists r, s \in R$ s.t. $rx + sy = \gcd(x, y)$

$$\left\{ \begin{array}{l} (3) \\ \{3, 6, 9, 12, \dots\} \supseteq \{6, 12, 18, \dots\} \end{array} \right. \quad (6)$$

$$\left\{ \begin{array}{l} (3) \\ \{3, 6, 9, 12, \dots\} \supseteq \{6, 12, 18, \dots\} \end{array} \right. \quad (6)$$

75 Prime & Irreducible elements: (Two different ways to define a prime)



If R is a domain, then every prime is irreducible

Prop: If R is a PID, then every irreducible is prime

Trivial...

Pf: Let r be prime $\Rightarrow r$ not unit
 Suppose $r = ab$, then $r \mid ab$
 $\Rightarrow r \mid a$ or $r \mid b$. wlog $r \mid a$
 Then $a \mid r$ as $r = ab$
 $\Rightarrow a \sim r$ so $r = aq$ w/ q unit.
 $\Rightarrow ab = aq \Rightarrow b = q$
 $\text{so } b \text{ unit} \Rightarrow r \text{ irreducible}$

Pf: Let r be irreducible. Then r not unit.
 suppose $r \mid ab$ w/ $a, b \in R$.

As R is a PID, $\gcd(x, y)$ exists $\forall x, y \in R$ and $\exists r, s \in R$ s.t. $rx + sy = \gcd(x, y)$

so $\exists c = \gcd(r, a) \Rightarrow r = ct$ for some $t \in R$

r irreducible \Rightarrow either c or t is a unit.

case1: If t unit, $r \sim c$, $c \mid a \Rightarrow r \mid a$ ✓

case2: If c unit, then (**) $\Rightarrow c = xab + yrb$ for $x, y \in R \Rightarrow cb = xab + yrb$.

know: ① $r \mid ab$ ② $r \mid yrb \Rightarrow r \mid cb$

Equivalently $ru = cb$ for $u \in R$. But c unit $\Rightarrow c^{-1}$ exists $\Rightarrow r \mid b$ ✓

Example: show $R = \mathbb{Z}[\sqrt{-5}]$ is not a PID

$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. claims 2 irreducible

2 not prime BUT not prime

$2 = x + y\sqrt{-5}$ Guess $2 = ab$ with $a, b \in \mathbb{Z}[\sqrt{-5}]$

$2x = 1 \pm \sqrt{-5}$ and show a or b are units.

$\Rightarrow x \notin \mathbb{Z}$ \rightarrow irreducible but not prime in PID \times .

$2 \text{ doesn't divide } 1 \pm \sqrt{-5}$ $4 = 1a^2 + 1b^2 = (x^2 + y^2)(5^2 + 5t^2)$ & cases on $|a|, |b|$ that makes 4

$a = x + y\sqrt{-5}$, $|a|^2$ or $|b|^2 = 1 \Rightarrow$ unit & no integer solns for $|a| = |b| = 2$.

$b = 5 + t\sqrt{-5}$

76

Unique Factorisation Domains:

$a \in R$ s.t. $\exists b \in R$
 $w/ ab = 1$

- An integral domain is a **factorisation domain (FD)** if each non-unit $x \in R \setminus \{0\}$ admits a factorisation $x = r_1 r_2 \dots r_n$ [r_i irreducible elements]
- A FD R is a **UFD** if:
 - (i) R is a FD
 - (ii) **[factorisation unique upto reordering]**
 - (iii) \forall non units $x \in R \setminus \{0\}$, and any two factorisations $r_1 r_2 \dots r_n = s_1 s_2 \dots s_m$ where r_i, s_i irreducible, we have $m = n$ & $\exists \sigma \in S_n$ s.t. $r_i = s_{\sigma(i)}$ $\forall i$

If R is a UFD then every irreducible element is prime

Pf: Pick $x \in R$ irreducible so x not a unit.
 wTS $x \mid ab \Rightarrow x \mid a$ or $x \mid b$
 Factorise a, b to get $ab = r_1 \dots r_n$
 Also $x \mid ab \Rightarrow ab = xy$ for $y \in R$
 Factorise $y \Rightarrow ab = s_1 s_2 \dots s_t$
 As UFD $x \sim r_i$ for some i
 factors match up
 $i \leq t \Rightarrow x \mid a, i > t \Rightarrow x \mid b$
 so x prime!

A PID is a FD

Pf: use contradiction!
 Let R be a PID, $x \in R \setminus \{0\}$ not unit. Assume x cannot be factorised into product of irreducibles.
 $\Rightarrow x = y z$ where y, z not units.
 \vdots
contradiction!

Every PID is a UFD

Pf: use induction on $n = m$
 $x \in R \setminus \{0\}$ not unit.
 $x = r_1 \dots r_n = s_1 \dots s_m$
 If $x = s_i = r_i$ true. Now $n > 1$
 $r_n \mid x, r_n$ irreducible $\Rightarrow r_n$ prime.
 so $r_n \mid s_i$ for some i
 $\Rightarrow r_n q = s_i$. s_i irreducible
 so q unit. Induct.

Any finite collection of elements in UFD has gcd, lcm

Chapter 9 - Fields

state that $(I, +) \in (R, +)$
 $\forall x \in I, \forall r \in R, x + r \in I$

77 **Def (Maximal Ideals):** An **ideal** I of a ring R is maximal if $I \neq R$ but if J is any ideal s.t. $I \subseteq J \subseteq R \Rightarrow J = I$ or $J = R$

78 **Prop (Ideals & Fields):** $(\text{An ideal } I \text{ in commutative ring } R \text{ maximal}) \iff (R/I \text{ is a field})$

Proof: \Rightarrow suppose $(R/I \text{ is a field})$
 I is maximal. wTS $\forall x \in R \setminus I$, $x + I$ has multiplicative inverse in R/I
 I maximal & $x \notin I \Rightarrow$ ideal $I + (x) = R \Rightarrow$ $\exists y \in R$ s.t. $1 \in I + xy$
 Then, $I + 1 = I + xy = (I + x)(I + y)$
 \Leftarrow J ideal s.t. $I \subseteq J \subseteq R \Rightarrow \dots \Rightarrow J = R$ so maximal ideal.

79 **Prop (maximal vs irreducible):** $(a \neq 0, \text{ any ideal } (a) \text{ in PID } R \text{ maximal}) \iff (a \text{ is irreducible})$

Proof: \Rightarrow I is maximal, then $(a) \neq R$
 so a not a unit. If $a = bc$
 $\Rightarrow (a) \subseteq (b) \subseteq R$ so cases
 $\begin{cases} 1) (a) = (b) \Rightarrow c \text{ unit} \\ 2) (b) = R \Rightarrow b \text{ unit} \end{cases}$

\Leftarrow a irreducible, then a not unit.
 so $(a) \neq R$. If $(a) \subseteq (b) \subseteq R$
 $\Rightarrow b \mid a \Rightarrow a = bc$ for some $c \in R$
 $\begin{cases} 1) c \text{ unit} \Rightarrow (a) = (b) \\ 2) b \text{ unit} \Rightarrow (b) = R \end{cases}$

(a) is maximal ideal.

78 Number Fields

(multiplications mod f)

- F field, $f \in F[x]$, $\deg(f) > 0 \Rightarrow F[x]/(f) =$ polynomials in f of degrees less than $\deg(f)$
- f irreducible $\Rightarrow F[x]/(f)$ is a field.
- Def:** $\alpha \in \mathbb{C}$ algebraic (over \mathbb{Q}) if $f(\alpha) = 0$ for some $f \in \mathbb{Q}[x]$, $\deg(f) > 0$. Otherwise, α is transcendental.
- (Minimal polynomial):** $\forall \alpha \in \mathbb{C}$, $f(x) \mapsto f(\alpha)$ is a ring homomorphism $\phi_\alpha: \mathbb{Q}[x] \rightarrow \mathbb{C}$. consider cases on α
 - ① α transcendental
 - ② α algebraic

$\Rightarrow \exists \alpha \in \mathbb{Q}[x] \text{ s.t. } f(\alpha) = 0$
 $\Rightarrow \ker(\phi_\alpha) = \{0\}$
 $\Rightarrow \text{im}(\phi_\alpha) \cong \mathbb{Q}[x]$
 ↓
 1st iso then 2nd isos

The monic
polynomial

$\exists f(x) \in \mathbb{Q}[x] \text{ non-zero s.t. } f(\alpha) = 0 \Rightarrow f \in \ker(\phi_\alpha)$
 $\ker(\phi_\alpha)$ is an ideal of $\mathbb{Q}[x]$ PID $\mathbb{Q}[x]$
 $\Rightarrow \ker(\phi_\alpha) = (m)$ for $m \in \mathbb{Q}[x]$
 make m monic & this is the monic polynomial of α (over \mathbb{Q})

Prop: If $\alpha \in \mathbb{C}$ algebraic, then \exists unique non-zero polynomial $m \in \mathbb{Q}[x]$ monic s.t. $m(\alpha) = 0$ & m irreducible

② Let f be monic irreducible $f \in \mathbb{Q}[x]$.
 \mathbb{C} closed algebraically $\Rightarrow f$ has a root $\alpha \in \mathbb{C}$
 $\Rightarrow f \in \ker(\phi_\alpha)$.
 Also, $\mathbb{Q}[x]$ is PID $\Rightarrow \ker(\phi_\alpha)$ PID
 f irreducible $\Rightarrow \ker(\phi_\alpha) = (f)$

① First iso form for rings:
 $\text{im}(\phi_\alpha) \cong \mathbb{Q}[x]/(f)$

f irreducible $\Rightarrow (f)$ maximal ideal
 \Downarrow
 $\text{im}(\phi_\alpha) \cong$ a subfield of \mathbb{C}
 denote $\mathbb{Q}[x]$ or $\mathbb{Q}(\alpha)$
 $\mathbb{Q}[x]/(f) \cong$ a field

$\Rightarrow f$ is monic polynomial of α & $\mathbb{Q}[x]/(f) \cong \text{im}(\phi_\alpha) = \mathbb{Q}(\alpha)$ subfield of \mathbb{C} .

Example $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$, this has $f = x^2 - 2$ minimal polynomial for $\sqrt{2} \in \mathbb{C}$ chosen

$\text{im}(\phi_\alpha)$ where $\mathbb{Q}[x]/(x^2 - 2) \cong \mathbb{Q}(\sqrt{2})$
 $\phi_\alpha : f(x) \mapsto f(\alpha)$ field !!!

Intg field?
 $\frac{a + b\sqrt{2}}{c + d\sqrt{2}} = \frac{\dots}{c^2 - 2d^2}$
 so closed!

Chapter 10 - Polynomials

79 **Deg (Algebraically closed):** A field F is algebraically closed if $\forall f \in F[x]$, $\deg(f) \geq 1$, $\exists \alpha \in F$ s.t. $f(\alpha) = 0$ [e.g. \mathbb{C} , every polynomial has a root]
 Note: The algebraic numbers $A \subseteq \mathbb{C}$ are the $\alpha \in \mathbb{C}$ s.t. $f(\alpha) = 0$ for some $f \in \mathbb{Q}[x]$ make a field $\mathbb{Q}(\alpha)$!

STEPS:

- ① Pick some $\alpha \in \mathbb{C}$
- ② \exists some $f \in \mathbb{Q}[x]$ monic & irreducible, $f(\alpha) = 0$
- ③ $\mathbb{Q}[x]/(f) \cong \text{im}(\phi_\alpha) \cong \mathbb{Q}(\alpha)$ is a field!

80 **Prop (irreducibles in $F[x]$):** If F algebraically closed field, then the irreducibles in $F[x]$ are the polynomials of degree 1. [each irreducible is an associate of $(x-\alpha)$ for $\alpha \in F$]
 Pf: See L.N.

81 **Prop (primes in $\mathbb{Z}[x]$):** The monic primes in $\mathbb{Z}[x]$ are $(x-a)$ & $x^2 + bx + c$
 $\forall a, b, c \in \mathbb{Z}$ s.t. $b^2 - 4c < 0$

Pf: v good exercise but over-examb...

$$3 \mid 6x^3 + 12x + 9 \text{ in } \mathbb{Z}[x]$$

let $R = \text{UFD}$

82 **Eisenstein's criterion:** Sufficient test for $\mathbb{Z}[x]$ polynomial irreducibility.

- an element $\alpha \neq f = a_0 + a_1x + \dots + a_nx^n \in R[x]$ is primitive if $\text{gcd}(a_0, \dots, a_n) = 1$
- any $f \in \mathbb{Z}[x]$ can be written as $f = \alpha f_0$ where $\alpha \in \mathbb{Z}$, f_0 primitive.
- (EC). Let $R = \text{UFD}$, $f = a_0 + a_1x + \dots + a_nx^n$ primitive polynomial in $R[x]$. Suppose \exists prime $p \in R$ s.t. $p \nmid a_n$, $p \mid a_i$ for $1 \leq i < n$. $p^2 \nmid a_0$
 $\Rightarrow f$ irreducible in $R[x]$

Note: can swap: $(p \nmid a_n, p \mid a_i \text{ for } 1 \leq i < n) \Leftrightarrow (p \nmid a_0, p \mid a_i \text{ for } 1 \leq i \leq n)$ and $p^2 \nmid a_0$

Pf: See notes...

83 **Gauss' Lemma:** A primitive polynomial in $\mathbb{Z}[x]$ remains irreducible in $\mathbb{Q}[x]$.

List of Example Groups

- ① If K is any field, then $(K, +)$ group, $K^* = K \setminus \{0\}$ so (K^*, \cdot) is a multiplicative group. $K = \mathbb{R}, \mathbb{C}, \mathbb{Q}$ etc...
- ② $C_n = \mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ w/ addition modulo n .
- ③ $U_n = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$
- ④ $GL(n, K) = \{M \in K^{n \times n} : \det(M) \neq 0\}$, $SL(n, K) = \{M \in K^{n \times n} : \det(M) = 1\}$
 $O(n, K) = \{M \in K^{n \times n} : M^T = M^{-1}\}$
- ⑤ If $g \in G$, then $\{g^t : t \in \mathbb{Z}\}$ is the cyclic subgroup generated by g .
- ⑥ Any subgroup of an abelian group is normal.
- ⑦ Quaternion Group Q_8
- ⑧ $H \leq G$, then $\phi: H \rightarrow G$ by $\phi(h) = h$ is homomorphism
- ⑨ $\phi: G \rightarrow G$ by $\phi(g) = t g t^{-1}$ is homomorphism
- ⑩ $\det(AB) = \det(A)\det(B) \Rightarrow \phi: GL(n, K) \rightarrow K^*$ by $\phi(g) = \det(g)$ is a
- ⑪ $\mathbb{Z}[i] = \{a+ib : a, b \in \mathbb{Z}\}$ subring of \mathbb{C} [Gaussian integers]
- ⑫ Ring homomorphisms:
 - congruence mod n $\mathbb{Z} \rightarrow \mathbb{Z}_n$
 - $\phi(z) = \bar{z}$ complex conj
 - $\phi_a: R[x] \rightarrow S$ by $\phi_a(f) = f(a)$ [evaluation map]
 - $\phi: R \rightarrow S$ ring homomorphism.
 $\psi: R[x] \rightarrow S[x]$ $\psi(a_n x^n + \dots + a_0) = \phi(a_n)x^n + \dots + \phi(a_0)$

Subring S	ideal I
$\cdot (S, +) \leq (R, +)$	$\cdot (I, +) \leq (R, +)$
$\cdot a_1, a_2 \in S$ $\Rightarrow a_1, a_2 \in S$	$\cdot \forall x \in I, r \in R$ $x \in I$
$\cdot 1_R \in S$	