

Asymptotics

Big O notation

$$f(x) = O(g(x)) \text{ as } x \rightarrow a \Leftrightarrow \left| \frac{f(x)}{g(x)} \right| \text{ bdd as } x \rightarrow a$$

little o notation

$$f(x) = o(g(x)) \text{ as } x \rightarrow a \Leftrightarrow \left| \frac{f(x)}{g(x)} \right| \rightarrow 0 \text{ as } x \rightarrow a$$

Capital O

$$f(x) = \Theta(g(x)) \text{ as } x \rightarrow a \Leftrightarrow f = O(g) \& g = O(f)$$

Asymptotic definitions

Series: $f(x) \sim \sum_{j=1}^n f_j(x) \text{ as } x \rightarrow a$

$\forall \text{ finite } m \in N, f(x) - \sum_{j=1}^m f_j(x) = o(f_m(x))$
 $[\varepsilon^2 = o(\varepsilon^2)]$

Sequence: $(a_n)_{n \geq 1}$ s.t. $a_{n+1}(x) = o(a_n(x)) \text{ as } x \rightarrow a$

Given a sequence $(a_n)_{n \geq 1}$, the asymptotic series

$$f \sim \sum_{j=1}^n f_j a_j(x), \text{ then } f_j \text{ coeff. unique}$$

$$f(x, \varepsilon) \sim \sum_{j=1}^n f_j(x) a_j(\varepsilon) \text{ as } \varepsilon \rightarrow 0 \text{ is a Poincaré expansion}$$

Poincaré expansions have unique coefficients f_j , gives $(a_n)_{n \geq 1}$

Singular Expansions

(all pretty general, particular to intervals)

- Rescale 1st. (include terms left out when set $\varepsilon=0$)
- For non-linear problems, rescale both f & x
- For some problems, need different rescalings in different places.
 - use correct scaling in correct place & match

Matching Matching Matching M

If we have different expansions in different places, need to match:

(a) Ad hoc: look at it by eye (few checks could be wrong)

(b) Van Dyke's Matching Rule (Sheet 4 Q5)

$$E_P H_Q f \sim H_Q E_P f$$

(c) intermediate variables (did this w/ integrals (Sheet 2 Q2, 3), but non-trivial for ODEs).

Composite expansions: $C = E_P f + H_Q f - E_P H_Q f$
 (not Poincaré \Rightarrow not unique, Sheet 4 Q5)

End points:

Watson's Lemma

$$I(\lambda) \sim \frac{1}{\lambda} f(A) e^{-\lambda g(A)}$$

(simple cases)

Interior:

Laplace's method: $g'(x_0) = 0$

$$I(\lambda) \sim \sqrt{\frac{2\pi}{-\lambda g''(x_0)}} f(x_0) e^{\lambda g(x_0)}$$

Regular Expansions

① Iteration method

② Successive approximations

- set $\varepsilon = 0$, solve for f_0
- set $f = f_0 + \varepsilon f_1$, solve for f_1
- exact eqn for εf_1
- Approx solve for εf_1 (by setting $\varepsilon = 0$), to get \hat{f}_1 . $f = f_0 + \hat{f}_1 + \varepsilon f_2, \dots$

③ Series Expansion

- Guess series

$$f = a_0(\varepsilon) f_0 + a_1(\varepsilon) f_1 + \dots$$

- Substitute in & solve for each f_0, f_1, f_2, \dots

e.g. $f = f_0 + \varepsilon f_1 + \varepsilon^2 f_2 + \dots$

If its a regular problem. Do the above & it will work. Problem for Singular situations.

If you set $\varepsilon = 0$, lose leading order terms.
 \Rightarrow so RESCALE to keep those important terms

Choice of rescaling

- Balance terms in equations or integrals (sheet 1 Q4)
- Solve for $\varepsilon = 0$ & look for where terms are larger or smaller than expected (Sheet 4 Q3 & Q4)
- Solve leading & 1st order & see where the correction term becomes large.

E.g. $f \sim 1 + \varepsilon x$

$$x = \Theta(1) \rightarrow \checkmark$$

$$x = \Theta(\frac{1}{\varepsilon}) \rightarrow \text{correction term too big.}$$

General Asymptotic \Rightarrow Specialise

Integrals w/ exponentials

$$I(\lambda) = \int_A^B f(x) e^{\lambda g(x)} dx \text{ as } \lambda \rightarrow \infty$$

w/ integral, more information than you need. Different intervals give the same number (the integral) - more degrees of freedom.

Look at where integral exponentially decays steepest descent:

deform contour s.t. $g'(z_*) = 0$ (saddle pt)
 Then use Laplace's method

Stationary phase highly oscillatory

$$I(\lambda) = \int_A^B f(x) e^{i\lambda \hat{g}(x)} dx$$

\Rightarrow set $i\hat{g}(x) = g(x)$ & use steepest descent

Integral Transforms

extend $f: [0, \infty) \rightarrow \mathbb{C}$ to $g: \mathbb{R} \rightarrow \mathbb{C}$
by zero extending $g(t) = \begin{cases} f(t) & t \geq 0 \\ 0 & t < 0 \end{cases}$

Fourier Transforms

forward $\tilde{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$

inverse $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i\omega t} d\omega$

Fourier Properties

name	$g(t)$	$\tilde{g}(\omega)$
Shift 1	$f(t-\alpha)$	$e^{-i\omega\alpha} \tilde{f}(\omega)$
Shift 2	$e^{i\omega t} f(t)$	$\tilde{f}(\omega - \alpha)$
Scaling	$f(\alpha t)$	$\frac{1}{ \alpha } \tilde{f}\left(\frac{\omega}{\alpha}\right)$
Diff	$f'(t)$	$i\omega \tilde{f}(\omega)$
$\times t$	$t f(t)$	$i \frac{d\tilde{f}}{d\omega}(\omega)$
convolution	$\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d\tau$	$\tilde{f}(\omega) \tilde{g}(\omega)$

Plancherel's Theorem

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |\tilde{f}(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |f(t)|^2 dt$$

energy in frequency domain

energy in time signal

Laplace Transforms

$$\hat{f}(s) = \int_0^{\infty} f(t) e^{-st} dt$$

$$f(t) = \frac{1}{2\pi i} \int_{-i\infty + \alpha}^{i\infty + \alpha} \hat{f}(s) e^{st} ds$$

• past all singularities

Examples

$f(t)$	$\hat{f}(s)$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$\sin(at)$	$\frac{a}{s^2 + a^2}$
t^n	$\frac{n!}{s^{n+1}}$

$$\begin{aligned} \frac{dy}{dt} &= -y(0) + s \hat{y}(s) & \text{JUST DIFF} \\ \frac{d^2y}{dt^2} &= -y'(0) + s \frac{dy}{dt} \\ &= -y'(0) + s(-y(0) + s \hat{y}(s)) \\ &= -y'(0) - sy(0) + s^2 \hat{y}(s) \end{aligned}$$

Laplace Properties

name	$g(t)$	$\hat{g}(s)$
Shift 1	$f(t-\alpha)$	$e^{-s\alpha} \hat{f}(s)$
Shift 2	$e^{at} f(t)$	$\hat{f}(s-a)$
Scaling	$f(\alpha t)$	$\frac{1}{\alpha} \hat{f}\left(\frac{s}{\alpha}\right)$
Diff	$f'(t)$	$-f(0) + s \hat{f}(s)$
	$f''(t)$	
$\times t$	$t f(t)$	$- \frac{d\hat{f}}{ds}(s)$
	t^n	$\frac{n!}{s^{n+1}}$
convolution	$\int_0^{\infty} f(\tau) g(t-\tau) d\tau$	$\hat{f}(s) \hat{g}(s)$