

You need to practice by yourself. lots of solved problems. Do them! Very important.

Lecture 1

What is Combinatorics?

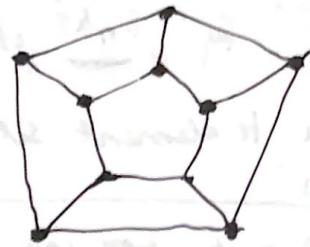
Counting things. \times The study of "finite structures."

It's a problem based field. Counting problems & not. Finite objects.

Combinatorics \hookrightarrow Probability. How many 6 digit lottery numbers are there?
If I pick one at random, what is $P(\text{win})$? Not probability distributions.

Q I have n identical balls, which I want to distribute in n labeled boxes. How many ways? (Not n^n)

Q

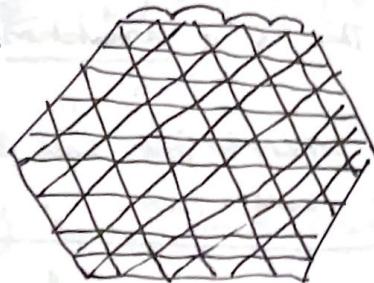


Can I walk on the graph visiting each vertex exactly once, ending where I started?

$4 = n$

What happens as $n \rightarrow \infty$?

Q



How many ways are there to fill up the gameboard with dominoes?

Why? It naturally occurs in maths...
connections to:

- linear algebra ?!

- complex analysis ?!

- group theory

- algebraic geometry

- statistical physics, quantum...
no matrices or complex numbers

Simplified model for crystal formation!

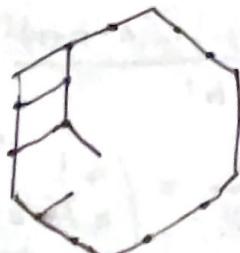
Simple answer...

Thm: [MacMahon 1916]. Number \rightarrow

$$\prod_{i=1}^n \prod_{j=1}^n \prod_{k=1}^n \frac{i+j+k-1}{i+j+k-2}$$

↙ lots of fractions but it ends up being an integer...

$$n=3: \frac{2}{1} \cdot \left(\frac{3}{2}\right)^3 \left(\frac{4}{3}\right) \dots = 980$$



You can translate combinatorial questions to make them easier!

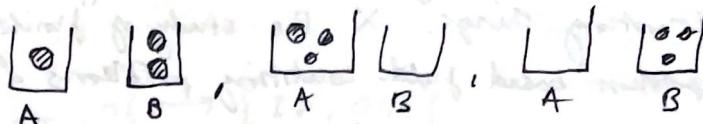
Lecture 2

6/10/22

Enumerative Combinatorics

① Eg. How many ways to distribute k labelled balls in n labelled boxes.

soln: $k=3, n=2$



8 ways to do it.

- all in A
- all in B
- 1 in A, 2 in B
- 1 in B, 2 in A

too complex!

For each ball, either in A or B.
Two choices for ball 1, 2 choices for ball 2, two choices for ball 3. Completely independent
So n^k choices.

same as how many functions from a k element set to an n element set?

② Eg. Same question with $k=n$, where each box can only hold one ball?

$n=3$, $\boxed{1} \boxed{2} \boxed{3}$, $(2, 3, 1), (1, 2, 3)$. This is a permutation.

$n!$

Reasoning: There are n choices for where to put ball one
There are $n-1$ choices for ball two.

③ Eg. Given 10 people, how many 3 person committees could you form?

- 10 choices for person 1
- 9 choices for person 2
- 8 choices for person 3.

But counted committees more than once!

C B E
C E B
B C E
C B E
E B C
E C B

$3!$ overcounted

In general:

- n choices for person 1
- $n-1$ " " " 2
- . . .

- $(n-k+1)$ choices for person k .

But we've counted each permutation $k!$ over.

$$\frac{n(n-1)\dots(n-k+1)}{k!}$$

$$= \frac{n!}{k!(n-k)!} = \binom{n}{k} {}^n C_k$$

binomial coefficient.

Q: How many committees, 'no size restriction', from n people?

$$\sum_{k=0}^n \binom{n}{k} = 2^n$$

LHS: subsets of $\{1, 2, \dots, n\}$.

Functions from $\{1, \dots, n\} \rightarrow \{\text{IN, OUT}\}$

Used two different ways of counting to argue two things are the same. Two ways of expressing the same problem.

These are 2^n such possibilities.

	$k=0$	1	2	3	4	5
$n=0$	1					
$n=1$	1	2	1			
$n=2$	1	3	3	1		
$n=3$	1	4	6	4	1	
$n=4$	1	5	10	10	5	1
$n=5$	1	6	15	20	15	6

Prop: $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

Pf: ① $\frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k-1)!!} = \frac{n!}{k!(n-k)!}$ not combinations!
algebra doesn't give us
understanding for why
true! it works,

② Same combinatorial counting problem in two ways.

LHS = k element subsets of an n element set $\{1, 2, \dots, n\}$.

RHS = ?

• First count k element subsets containing 1

• Then count k element subsets not containing 1.

↓
count k element subsets of $\{2, 3, \dots, n\}$, this is $\binom{n-1}{k}$

we know 1 is in there so pick $k-1$ elements of $\{2, 3, \dots, n\}$
 $k-1$ subsets of $\{2, 3, \dots, n\}$ so $\binom{n-1}{k-1}$

Thus $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

Binomial Theorem

Let $n \in \mathbb{N}$. $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$

why: $(a+b)(a+b)\dots(a+b)$

How many ways to get $a^k b^{n-k}$. To choose k as, pick out of n picks k . Out of the n b s pick $n-k$.

Generalisation

Given n people, divide them into groups of sizes k_1, k_2, \dots, k_r , where $k_1 + k_2 + \dots + k_r = n$.

Q: How many choices for l persons on l committees?

$$\frac{n!}{k_1! k_2! \dots k_r!} = \binom{n}{k_1, k_2, \dots, k_r} \text{ multinomial coefficient.}$$

Picks 3 for your group & 7 for the other group with binomial.

$$\frac{n!}{k_1! (n-k_1)!} \leftarrow$$

$\uparrow \quad \uparrow$
 $k_1 \quad k_2$

Multinomial Theorem

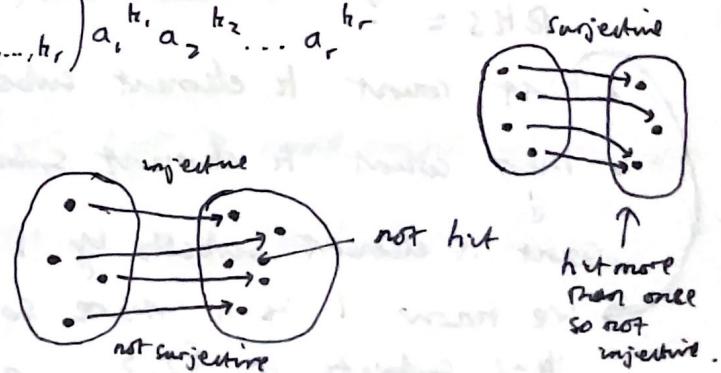
Let n be a positive integer

$$(a_1 + \dots + a_r)^n = \sum_{k_1+k_2+\dots+k_r=n} \binom{n}{k_1, k_2, \dots, k_r} a_1^{k_1} a_2^{k_2} \dots a_r^{k_r}$$

Pf: Same as binomial.

Functions

~~FUNCTION~~ $f: \mathbb{N} \rightarrow \mathbb{N}$



Def: A function from \mathbb{N} to \mathbb{N} is injective if it takes each value of \mathbb{N} at most once. [every element in target hit ^{at most} once].

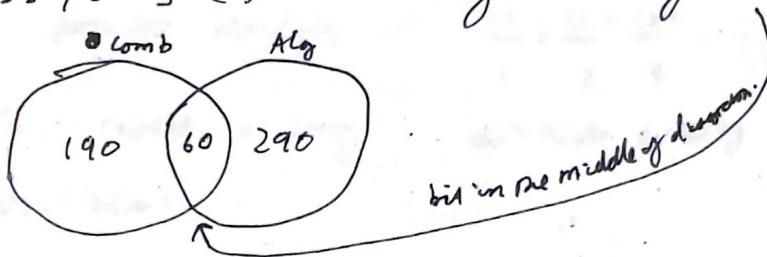
[only exist if $|\mathbb{N}| \leq |\mathbb{N}|$]

Def: A function from \mathbb{N} to \mathbb{N} is surjective if it takes each value of \mathbb{N} at least once. Only exist if $|\mathbb{N}| \geq |\mathbb{N}|$ Bijective if both $|\mathbb{N}| = |\mathbb{N}|$

Bijective \Leftrightarrow invertible. \Leftrightarrow two sets are the same size \Leftrightarrow proof = build a bijection.

Inclusion-Exclusion

Eg suppose 250 students take combinatorics and 350 are taking Algebra I. How many are taking at least one. Ans $\in [350, 600]$ \Leftrightarrow How many taking BOTH + venn diagram.



$$250 + 350 - 60 = \text{ans.} \quad \leftarrow \text{to remove the double counting.}$$

$$|C \cup A| = |C| + |A| - |C \cap A|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$$

In general:

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|$$

\leftarrow all subsets

Pf: Pick a student and make sure picked only once.

Application: $n!$ permutations of $\{1, \dots, n\}$. Eg $24314 \in S_5$.

$$\begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 0 & 3 \end{matrix} \leftarrow \begin{matrix} \text{fixed} \\ \text{point} \end{matrix} \quad \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{matrix} \leftarrow \text{derangement} = \text{'no fixed point'}$$

How many derangements of $\{1, \dots, n\}$ are there?

• Try count not derangements!

- 1st column could match $\boxed{1}$ or 1 or 2 could match $\boxed{1}$ or 2 could match \Rightarrow unions!
- 2nd column could match $\boxed{2}$ or 1 or 2 could match \Rightarrow unions!

Let $\bigcirc A_i = \text{set of permutations s.t. } i \text{ is a fixed point } (\forall i: i = i)$

derangements is $n! - \left| \bigcup_{i=1}^n A_i \right|$

$$|A_i| = (n-1)! \quad [n-1 \text{ remaining elements}] \Rightarrow |A_i| = (n-1)!$$

$$|A_i \cap A_j| = (n-2)!$$

$$\text{so } |A_1 \cup \dots \cup A_n| = \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|-1} (n-|I|)!$$

Counting derangements, \Leftrightarrow If I randomly redistribute all of room's coats,
 $P(\text{nobody gets their coat back})$

permutations that are not derangements,

$$= \sum_{\substack{I \subseteq \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|-1} (n-|I|)! \quad \binom{n}{j} = \frac{n!}{j!(n-j)!}$$

$$= \sum_{j=1}^n (-1)^{j-1} \binom{n}{j} (n-j)! \quad [\text{counting all subsets of size } j]$$

cl 8.

$$\text{so number of derangements} = n! - \sum_{j=1}^n (-1)^{j-1} \frac{n!}{j!}$$

$$= \sum_{j=0}^n (-1)^j \frac{n!}{j!}$$

$$= n! \sum_{j=0}^n \frac{(-1)^j}{j!}$$

$$\text{so } P(\text{nobody gets their own coat}) = \sum_{j=0}^n \frac{(-1)^j}{j!} \rightarrow \frac{1}{e} \text{ as } n \rightarrow \infty.$$

New counting problem

How many ways are there to distribute k chores among n people?

eg $k=3, n=3$

- Give all to 1 person (3)

- Give 2 to 1 person to 1 person

- Give 2 / 1 / 0 3 chores for 2, 2 chores for 1, (6)

- Give 1 / 1 / 1 (1)

so 10 chores in total. let's draw them.

*** | |

3 stars, 2 bars. ~~total~~ 5 symbols in total.

so sequences of ~~k~~ stars and $n-1$ bars.

** | * |

To count sequences. 5 symbols choose which are stars.

* | * | *

$k+n-1$ symbols. How many ways to choose $n-1$ bars or stars.

1 * | * * 0

$$C_{n,k} := \binom{k+n-1}{n-1} = \binom{k+n-1}{k} \leftarrow \text{answer.}$$

Sequences of 3 stars and two bars are in bijection with derangements of chores

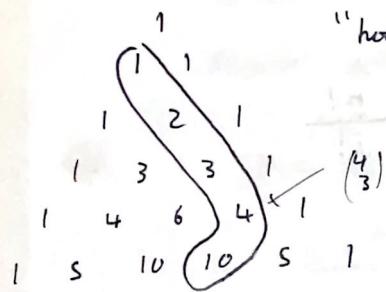
$$C_{n,h} = \sum_{i=0}^h C_{n-1, h-i}$$

22

cookies to first person, 1, 2, 3, ..., h
all cookies to first

once chosen 1st person,
now have $h-i$ cookies
to distribute among the
 $n-1$ people remaining

$$\binom{h+n-1}{h} = \binom{h+n-2}{h} + \binom{h+n-3}{h-1} + \binom{h+n-4}{h-2} + \dots + \binom{n-2}{0}$$



"horizontally stacked identity"
pattern comes from combinatorics.

New Problem

Given a finite set $\{1, \dots, n\}$, a set partition of $\{1, \dots, n\}$ is a division into non-overlapping non-empty ^{subsets}.

How many set partitions of $\{1, \dots, n\}$ into h parts are there?

Example

$n=4, h=2$.

Sizes: 1/3 : $\{\{1\}, \{2, 3, 4\}\}$ $\{\{3\}, \{1, 2, 4\}\}$ $\{\{1, 2\}, \{3, 4\}\}$ $\{\{1, 4\}, \{2, 3\}\}$

Sizes: 2/2 : $\{\{2\}, \{1, 3, 4\}\}$ $\{\{4\}, \{1, 2, 3\}\}$ $\{\{1, 3\}, \{2, 4\}\}$

so answer is 7.

Def: The sterling number $S(n, h)$ is the answer to this question.

Combinatorics

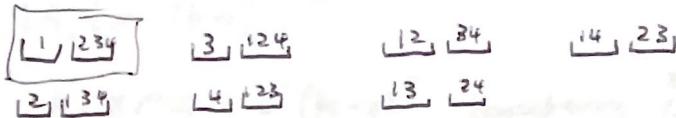
13/10/22

$$[n] = \{1, \dots, n\}$$

E₅ divide $[4]$ into 2 parts.

compute $S(n, k) = \#$ set partitions of $[n]$ into k parts.

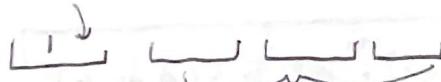
$S(100, 20)$ is too hard for a computer! Need to be clever.



Break problem down, treat 1 as special.

①

$j \neq 1$ other elements



[1 has to be in ~~another~~ another] how are the remaining elements distributed?

$$\sum_{j=0}^{n-1} \binom{n-1}{j} S(n-(j+1), k-1) = S(n, k)$$

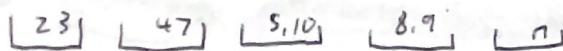
take out 1, $n-1$ elements left, then
prett k. need up $k+1$ elements so
 $n-(k+1)$ elements

~~some k+1, j+1~~

If $j > n-1$, #elements not with 1 would be $n-(j+1)$

②

Want: $S(n, k)$ to $S(n-1, k)$ relation.

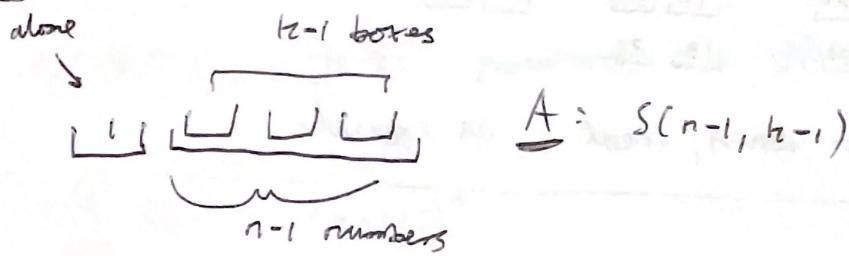


Q: How many set partitions of $[n]$ give this one when I
delete one? A: k .

$k \cdot S(n-1, k)$ (number of set partitions after
deleting 1. Doesn't count them
all.)

What have we missed? when one is alone. Missed these set
partitions.

- Defined a function from set partitions of $[n]$, where 1 is not alone to the set of partitions of $\{2, \dots, n\}$ into $t-1$ parts [delete 1]
- t elements map from set 1 to set 2. Each has a size t .
- eg $\{1\} \rightarrow$ removed, need to count when one is alone,

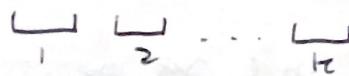


Summary:

$$S(n, t) = S(n-1, t-1) + \text{to } S(n-1, t)$$

	$t=1$	2	3	4	5	6
$n=1$	1	1				
2	1	2	1			
3	1	3	1			
4	1	7	6	1		
5	1	15	25	10	1	
6	1	31	90	65	15	1

boxes before weren't labelled.
How about



sets \Leftrightarrow surjective functions
bijection.

$$\sqcup \sqcup \sqcup \neq \sqcup \sqcup \sqcup \text{ vs } \begin{matrix} * & * & * \\ \text{these are the same} & \end{matrix}$$

Summary: $t: S(n, t) \rightarrow$ # set partitions of $[n]$ with t labelled parts.

Think of this as a function from $[n]$ to $[t]$. This is surjective.
Process is invertible. Bijective,

let $A_i = \{ \text{functions } [n] \rightarrow [k] \text{ s.t. } f \text{ does not hit } i \}$

$\nexists x \in [n] \text{ s.t. } f(x) = i$

so A_i is ~~not~~ not surjective set of functions.

compute:

$$|A_i| = (k-1)^n \quad \leftarrow k-1 \text{ choices for each of } 1, \dots, n \text{ inputs}$$

$$|A_i \cap A_j| = (k-2)^n \text{ functions that don't hit } i \text{ or } j$$

⋮

$$|\bigcap_{i \in I} A_i| = (k-|I|)^n$$

$$\begin{aligned} |A_1 \cup \dots \cup A_n| &= \sum_{\substack{I \subseteq [k] \\ I \neq \emptyset}} (-1)^{|I|-1} (k-|I|)^n \\ &= \sum_{j=0}^k (-1)^{j-1} (k-j)^n \binom{n}{k-j} \\ &= n^k - k! S(n, k) \end{aligned} \quad \left. \begin{array}{l} \text{from bijection} \\ \text{set up.} \end{array} \right]$$

$$S(n, k) = \frac{1}{k!} \sum_{j=0}^k (-1)^j (k-j)^n \binom{n}{k-j}$$

take $S(n, k)$ counting problem & take tackled in in several ways.
Translated counting problems, set up bijections

Def: Bell numbers = # set partitions of $[n]$ into any number of non-empty parts.

$$B_n = \sum_{k=1}^n S(n, k).$$

Generating Functions

$$\theta_n = 1, 1, 2, 5, 15, 52, 203, 877, \dots$$

Power Series:

$$\frac{1}{0!} + \frac{1}{1!}x + \frac{2}{2!}x^2 + \frac{5}{3!}x^3 + \frac{15}{4!}x^4 + \dots = e^{(e^x-1)}$$

Remarks: $S(n, h)$

$$(1) n=0 ? \quad \begin{cases} 0 & , h > 0 \\ 1 & , h = 1 \end{cases}$$

$$(2) h=0 ? \quad \begin{cases} 0 & n \neq 0, n > 0 \\ 1 & n = 1 \end{cases}$$

$$B_0 = 1 = \sum_{h=0}^0 S(n, h) = S(n, 0) = 1$$

Def: Let a_0, a_1, \dots be a sequence. The exponential generating function of a_0, a_1, \dots is

$$A(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$$

[may not be a function]

Def: The ordinary generating function of a_0, a_1, \dots is

$$\sum_{n=0}^{\infty} a_n x^n$$

$$\text{Ex: } a_{n+1} = 4a_n - 100$$

$$\begin{aligned} \text{OGF: } & S_0 + 100x + 300x^2 + 1100x^3 + 4300x^4 + \dots = A(x) \\ \Rightarrow & 200 + 400x + 1200x^2 + 4400x^3 + \dots = 4A(x) \\ & 0 + 200x + 400x^2 + 1200x^3 + \dots = 4xA(x) \end{aligned}$$

$$4xA(x) - A(x) = -50 + 100x + 100x^2 + 1000x^3 + \dots$$

$$= -150 + 100 \sum_{n=0}^{\infty} x^n$$

$$A(x) = \frac{100}{1-x} - \frac{150}{4x-1}$$

$$A(x) = \frac{\frac{100}{1-x} - 150}{4x-1}$$

$$A(x) = \frac{150x - 50}{(4x-1)(1-x)} \quad \text{partial fractions}$$

$$\frac{a}{4x-1} + \frac{b}{1-x}$$

$$\left[\frac{100/3}{1-x} - \frac{50}{4x-1} = A(x) \right] \Rightarrow A(x) = \frac{100/3}{1-x} + \frac{50/3}{1-4x}$$

$$\frac{100}{3} (1+x+x^2+\dots) - \frac{100}{3} (1+4x+(4x)^2+\dots)$$

$$a_n = \frac{100}{3} - \frac{100}{3} \cdot 4^n$$

$$\text{so } A(x) = \frac{100}{3} \sum_{n=0}^{\infty} x^n + \frac{50}{3} \sum_{n=0}^{\infty} (4x)^n$$

$$\text{so coefficient of } x^n = \frac{100}{3} + \frac{50}{3} \cdot 4^n$$

$$\text{Ex: } \binom{n}{h} ?$$

non-harmonic
sequence.

$$A(x) = \sum_{n=0}^{\infty} \binom{h+n}{h} x^n$$

some
diagonal
of Pascal

$$\begin{matrix} & 1 & & & \\ h & & 1 & 1 & & \\ & 1 & 2 & 1 & & \text{fix that} \\ & & & 3 & 1 & \text{diagonal} \\ & 1 & 3 & 3 & 1 & \\ & & 4 & 6 & 4 & 1 \end{matrix}$$

$$= \sum_{n=0}^{\infty} \frac{(h+n)!}{h! n!} x^n$$

$$A'(x) = \sum_{n=1}^{\infty} \frac{(h+n)!}{h! (n-1)!} x^{n-1}$$

$$\text{check: } (1-x)A'(x) = (h+1)A(x)$$

$$\Leftrightarrow \int \frac{A'(x)}{A(x)} = \int \frac{h+1}{1-x}$$

$$\Rightarrow \log(A(x)) = (h+1)\log(1-x) + C$$

$$A(x) = B(1-x) \cdot x^{(h+1)} \cdot B(1-x)^{-(h+1)}$$

$$A(0) = 1 \Rightarrow B = 1$$

$$\Rightarrow A(x) = \frac{1}{(1-x)^{h+1}}$$

$$\hookrightarrow A(x) = \binom{h}{h} + \binom{h+1}{h} x + \binom{h+2}{h} x^2 + \dots$$

$$A(0) = \binom{h}{h} = 1$$

$$\text{Second way that } A(x) = \frac{1}{(1-x)^{k+1}} = \sum$$

$$(1+x+x^2+\dots)(1+x+x^2+\dots)\dots(1+x+x^2+\dots) \quad (k+1 \text{ times})$$

What's the coefficient of x^n ?

Take x^2 : x^2 in 1st and 1 everywhere else

x in 1st x in 2nd and 1 everywhere else

give them basis

* 11**1 coefficient of x^n \rightarrow [total factors/people]

$$1 \rightarrow 1$$

$$2 \rightarrow 0$$

$$3 \rightarrow 2$$

$$4 \rightarrow 0$$

$$\binom{(k+1)+(n-k-1)}{n} = \binom{k+n}{n} = \binom{k+n}{k} \text{ people} \quad \text{[up previous lecture]}$$

$$5 \rightarrow 0 \quad \text{coefficient of } x^n \text{ in } \frac{1}{(1-x)^{k+1}} \rightarrow \binom{k+n}{k}$$

$$\Rightarrow \frac{1}{(1-x)^{k+1}} = \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = A(x)$$

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \binom{n+k}{k} x^n y^k = \frac{1}{1-x-y}$$

Generating functions with
combinatorics \Rightarrow analysis

$$e^{e^x-1}$$

see \Rightarrow studying combinatorial problems
with generating functions & de
tailed analysis

claim: $B_n = \# \text{ set partitions of } [n]$

$$\text{such } \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n = e^{e^x-1} = A(x) \quad \begin{aligned} m &= n-(k+1) \\ n &= m+k+1 \end{aligned}$$

$$\text{Pf: use } B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k$$

$$= \sum_{k=0}^{\infty} \sum_{n=k+1}^{\infty} \binom{n-1}{k} B_k \frac{x^{n-1}}{(n-1)!}$$

$$= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{1}{k! m!} B_k x^m x^k \quad A(0) = B_0$$

$$= \left(\sum_{k=0}^{\infty} \frac{B_k}{k!} x^k \right) \left(\sum_{m=0}^{\infty} \frac{x^m}{m!} \right) \quad \text{1 partition of } n \text{ into } m+k+1 \text{ parts}$$

$$= A(x) \cdot e^x \Rightarrow A'(x) = A(x) e^x$$

$$\Rightarrow \log(A(x)) = e^x - c \quad B_0 = 1$$

$$\Rightarrow A(x) = e^{e^x-1} \quad c = -1$$

$$\begin{aligned} A'(x) &= \sum_{n=0}^{\infty} \frac{B_n}{(n-1)!} x^{n-1} = \sum_{n=1}^{\infty} \frac{B_{n-1}}{(n-1)!} x^{n-1} \\ &= \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \binom{n-1}{k} B_k \frac{x^{n-1}}{(n-1)!} \\ &= \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \binom{n-1}{k} B_k \frac{x^{n-1}}{(n-1)!} \\ &= \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \binom{m+k}{k} B_k \frac{x^{m+k}}{(m+k)!} \\ &= \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \binom{m+k}{k} B_k \frac{x^{m+k}}{(m+k)!} \end{aligned}$$

Integer Partitions

Def: An integer partition is a way of writing a number n as a sum of positive integers.

e.g. $n=8$, $6+2$, $2+2+2+1+1$, 8 , etc. Don't care about the order.

[order does not distinguish partitions, otherwise it's a composition question].

Def: $p(n)$ is the number of integer partitions of n .

$p_k(n)$ is # of partitions of n into k parts.

$p_{\text{odd}}(n)$ = # partitions into odd parts etc.

Questions

- Formula?
- Generating functions?
- Recursion?
- How to compute $p(100)$?

$$p(n) = 1, 2, 3, 5, 7, 11, 15, 22, \dots$$

$$p(8) = 8, 7+1, 6+2, 6+1+1, \dots, 3+3+2$$

[start with largest & only go smaller]

Recursion $\sum_{a=1}^8 p(n-a) \leftarrow$ partitions of $n-a$
all of sum at most a .

Notation: $3+3+1 \rightsquigarrow$

'young diagram'

at most k rows

(# partitions into at most k parts) = (# number of partitions of n into parts that are at most k)

e.g. $n=7, k=3$

$$|\{7, 6+1, 5+2, 5+1+1, 4+3, 4+2+1, 3+3+1, 3+2+2\}| = 8$$

$$|\{3+3+1, 3+2+2, 3+2+1+1, 3+1+1+1+1, 2+2+2+1, 2+1+1+1+1, 2+1+1+1+1+1, 1+1+1+1+1+1+1\}| = 8$$

$$\begin{array}{c} \text{3+3+1} \\ \rightsquigarrow \\ \text{3+2+2} \end{array}$$

$$\begin{array}{c} \text{3+3+1} \\ \rightsquigarrow \\ \text{2+2+2+1+1} \end{array}$$

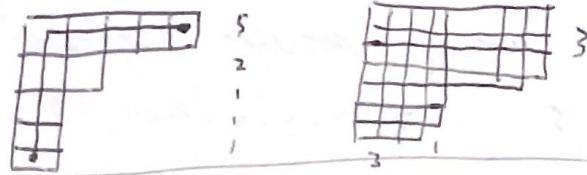
$$\begin{array}{c} \text{2+2+1+1+1} \\ \rightsquigarrow \\ \text{2+2+1+1+1+1+1} \end{array}$$

Prop: (# partitions of n into distinct odd parts)

= (# self conjugate partitions of n)

REVIEW

$n=10$: $\pi \models 7+3, 9+1$,



Given a self conjugate Young diagram, we can measure its hook lengths [check:]

resulting partition

- (a) is a partition of n ✓ [all boxes filled]
- (b) all parts distinct ✓ [each decreases by two each time]
- (c) all parts are odd ✓
- (d) bijection ✓ [algorithm for these maps]

Prop: (# partitions of n into distinct parts) =

= (# partitions of n into odd parts)

Eg $n=8$: $7+1, 5+3, 5+1+1+1, 3+5+3+1+1, 3+1+1+\dots+1, 1+\dots+1$ odd parts

$7+1, 6+2, 5+3, 5+2+1, 4+3+1, 8$ ← distinct parts

Pf: consider $(1+x+x^2+\dots)(1+x^2+x^4+\dots)(1+x^3+x^6+\dots)\dots$.

coefficient of x^n ? Is it well defined?

x^2 : x^2 from 1st, 1 from rest well defined to compute.

x^{100} , only need to consider the first 100 terms. checked!

$$4 \times 4 \times 4 + 2 \times 2 + 1 = 17$$

2 in 1st

column,
nothing else

correspondence:

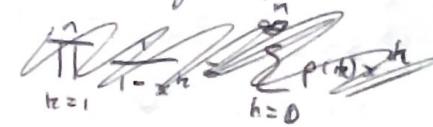
1st factor: x^2

2nd factor: $(x^2)^2$

3rd factor: 1

4th factor: $(x^4)^{13}$

$x^{17} \rightarrow$ lots of ways.



coefficient of x^n is number of partitions of n .

$$4x^2, 3x^2, 2x^2, 1, 1+1+1+1 \\ 1 \cdot 1 \cdot 1 \cdot x^4, x^3 \cdot 1, x^2 \cdot (x^2)^2 \cdot (x^1)^4$$

$$\Rightarrow 1 + \prod_{i=1}^{\infty} \frac{1}{1-x^i} = \sum_{n=1}^{\infty} p(n)x^n$$

Formalised, $n = \oplus_1$ partitions of n

a_1 1s, a_2 2s, a_3 3s, ...

choose

x^{a_1} in 1st factor

$(x^{a_2})^{a_2}$ in 2nd factor

$(x^3)^{a_3}$ in 3rd factor

\vdots

$$\Rightarrow 1 + \sum_{n=1}^{\infty} p(n)x^n = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

on the other hand,

$$(1+x+x^2+\dots)(1+x^3+x^6+\dots)(1+x^5+x^{10}+\dots)\dots$$

is a partition of n into odd parts.

$$1 + \sum_{n=1}^{\infty} p^{\text{odd parts}}(n)x^n = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

$(1+x)(1+x^2)(1+x^3)(1+x^4)\dots$ = number of partitions
into distinct parts.
can't have only 0 4s or
2 2s 1 4
odd parts.

$$\left(\frac{1}{1-x} \right) \left(\frac{1}{1-x^3} \right) \left(\frac{1}{1-x^5} \right) \dots$$

$$\left(\frac{1+x}{1-x^2} \right) \left(\frac{1+x^3}{1-x^6} \right) \left(\frac{1+x^5}{1-x^{10}} \right) \dots$$

Prove: (# partitions of n into odd parts) = (# partitions of n into distinct parts)

$$1 + \sum_{n=1}^{\infty} p(n)x^n = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

last time -

$$\sum_{n=1}^{\infty} p^{\text{odd parts}}(n)x^n = \left(\frac{1}{1-x}\right)\left(\frac{1}{1-x^3}\right)\left(\frac{1}{1-x^5}\right)\dots$$

$$\sum_{n=1}^{\infty} p^{\text{distinct}}(n)x^n = (1+x)(1+x^2)(1+x^3)\dots$$

$$= \left(\frac{1+x^2}{1-x^2}\right)\left(\frac{1+x^4}{1-x^4}\right)\left(\frac{1+x^6}{1-x^6}\right)\left(\frac{1+x^8}{1-x^8}\right)\dots$$

$$= \frac{1}{(1-x)(1-x^3)(1-x^5)}\dots$$

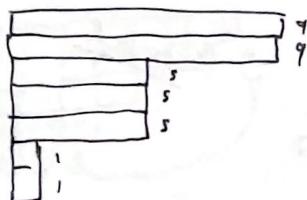
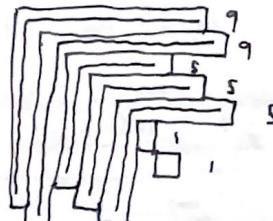
so two generating functions equal so

$$p^{\text{odd parts}}(n) \approx p^{\text{distinct}}(n)$$

□

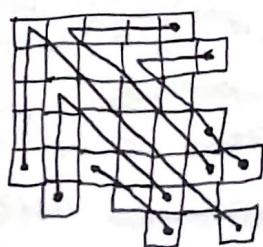
Bijection proof:

Sketch: Partition 35 into odd parts $9+9+5+5+5+1+1 = 35$



Start from top,
bend over around.

or



$$11+8+7+6+3$$

↔ bijection between these
3 ways of looking at this.

$$(1+x)(1+x^2)(1+x^3)(1+x^4)$$

$$x^4: 01s, 02s, 03s, 14$$

$$11s, 02s, 13, 04s$$

Observe: $A(x) = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$ consider the inverse?

generation
functions
of partition
numbers

$$B(x) = \prod_{i=1}^{\infty} (1-x^i)$$

$$A(x) \cdot B(x) = 1$$

$$B(x) = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} - x^{35} - x^{40} + \dots$$

$$A(x) \cdot B(x) = 1$$

$$\Rightarrow (1 + p(1)x + p(2)x^2 + \dots) \left(\frac{1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + \dots}{1} \right) = 1$$

Coefficient of x^n is:

$$p(n) = \underbrace{1 \cdot 1 \cdot \dots \cdot 1}_{n-1} - p(n-1) \cdot 1 + \underbrace{p(n-2) + \dots + p(n-5) + p(n-7) - \dots - p(n-12)}_{n-3}$$

$$A(x)B(x) = 1 \text{ so } \underline{p(n)} \text{ is equal to zero.}$$

Reconsidering, (Euler's pentagonal number theorem)

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + \dots$$

$$1, 1, 2, 3, 5, 7, 11, 15$$

$$p(6) = p(5) + p(4) - p(1)$$

Ex: $B(x) = 1 - x - x^2 + x^5 + x^7 - x^{15} - \dots$ $p(6) = ?$

Recall, $\sum_{n=1}^{\infty} p(\text{distinct})(n)x^n = \prod_{i=1}^{\infty} (1-x^i)$

But $B(x) = \prod_{i=1}^{\infty} (1-x^i)$ coefficient of x^n is # partitions of n into distinct parts BUT if # parts is odd, count them as -1.

(Same as counting partitions where a partition with h parts contributes $(-1)^h$ to coefficient of x^n .)

\Leftrightarrow (# partitions of n into even # parts -) $n \Rightarrow$ $\begin{matrix} -1 \\ 7 \\ 4+3 \end{matrix}$
partitions of n into odd # parts \Rightarrow $\begin{matrix} -1 \\ 6+1 \\ 4+3+1 \end{matrix}$

for most n , bijection between

$$\begin{matrix} -1 \\ 7 \\ 4+3 \end{matrix} \quad \begin{matrix} -1 \\ 6+1 \\ 4+3+1 \end{matrix}$$

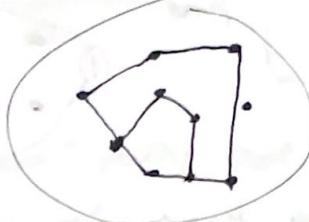
$\Rightarrow 1$

Pentagonal Number thm

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + \dots$$

nested pentagons

•



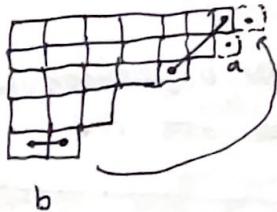
formula?

Reduced proof to a statement about even & odd # of distinct parts.

partitions of n
with an odd number
of distinct parts

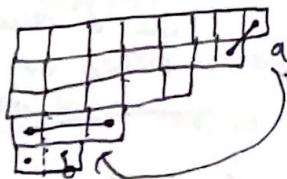
partitions of n
with an even #
distinct parts.
↑
off by 1 in cases
1, 2, 5, 7, 12, ...

Example $7+6+5+3+2 = 23$



$b \leq a$ so can shift b to a on diagonal.
 \Rightarrow so get a partition with 1 fewer part
but they're all still distinct.

1 less part: odd # parts to even # parts [parity changed].



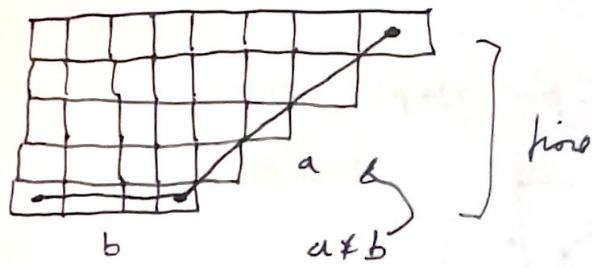
$a \leq b$ so shift a to b and get
a new partition
 \Rightarrow added 1 part to partition [parity changed].

Bijection because it is its own inverse, so a well defined
bijection function. [relies on the fact that we have distinct parts]
operations

- If $b \leq a$, then move row b to lie diagonally next to a
- If $b > a$, then move diagonal a down to a new row below b

bijection between partitions of n with an odd & even
number of distinct parts. When doesn't this work?

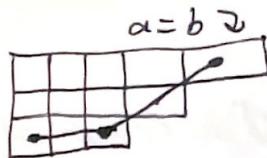
WHAT HAPPENS when a & b part of a ?



now

Bad y

- a and b meet
- and $a = b$

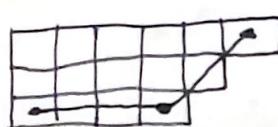


bad

$5+4+3$
 11
 $7+6+5+4$

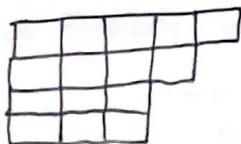
bad

problem points



bad

now



not distinct
parts

② • $a = b - 1$

- a and b meet

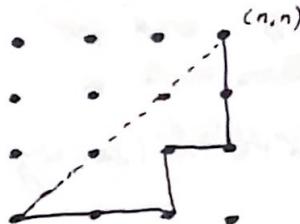
If \circ neither of the bad scenarios happen, \circ bijection works.
Turn bad scenarios into numbers & these are the numbers that don't work.

Catalan Numbers

pathways

Regular

$n+2$ points, count transpositions



$$c_0 = 1, c_1 = 1, c_2 = 2, c_3 = 5, c_4 = 14$$

$(0,0)$

$$c_{n+1} = \sum_{i=0}^n c_i c_{n-i}$$

vertices are labelled

points

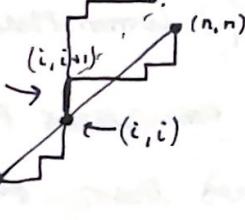
Generating Functions:

27/10/22

$$\sum_{n=0}^{\infty} c_n x^n = \frac{1 + \sqrt{1-4x}}{2x}$$

Formula via counting "bad" paths that go above diagonal somewhere.

$(0,0) \rightarrow (n,n)$ but above diagonal. Let's put these paths

need to have a vertical step here  in bijection with something I can count more easily.

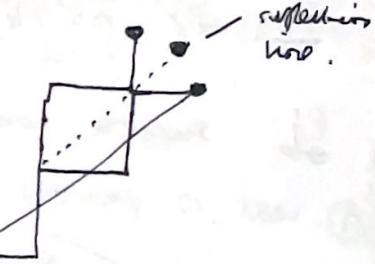
Apply a reflection

(i,i) is the first time path hits the diagonal.

Reflected lattice method:

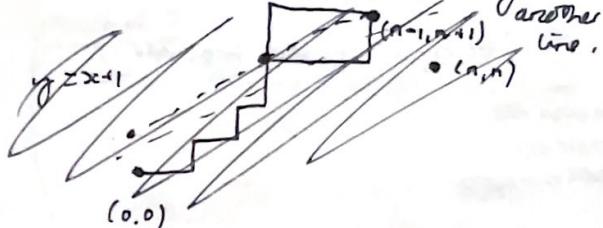
- Bad path \rightarrow reflect part from $(i,i+1)$
- Reflect path \rightarrow from $(i,i+1)$

NE lattice path from $(0,0) \rightarrow (n-1, n+1)$



bijection between these sets.

bijection: reversible reflections along



$\binom{2n}{n-1}$ of these

[assignment 1] $\binom{2n}{n}$ paths of length $2n$

$$\left(\# \text{ paths from } (0,0) \text{ to } (n,n) \right) = \left(\# \text{ NE lattice paths from } (0,0) \text{ to } (n,n) \right) - \left(\text{Bad paths} \right)$$

$$c_n = \binom{2n}{n} - \binom{2n}{n-1}$$

path of length $2n$, choose n moves [assignment 1]

symmetry

$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

External combinatorics

- Let n, t positive integers.
- Form as many t person committees as possible out of n people with constraint that any two share a member.

Strategy 1

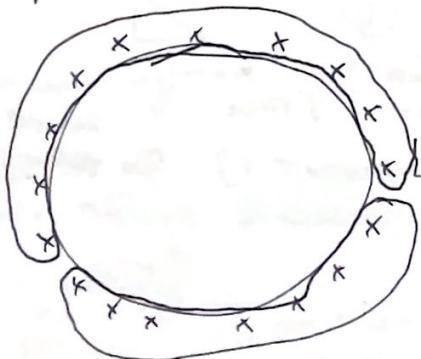
① Put person 1 on all committees. $\binom{n-1}{t-1}$ committees.

Observe: If $n < 2t$ just form all $\binom{n}{t}$ committees possible committees [forced to have overlap, way more committees than possible people.]

Thm: If $n \geq 2t$, then $\binom{n-1}{t-1}$ is the most committees you can form.

Pf: suppose committees A_1, \dots, A_N , $A_i \subset [n]$. $A_i \cap A_j \neq \emptyset$

① Seat n people at a circular table.



Is A_i seated separately seated consecutively.

$$X = \sum_{\substack{\text{all possible} \\ \text{seatings} \\ \text{for 12 people}}} (\# A_i \text{ s seated together})$$

Given i , how many seatings put A_i together?

$$t! (n-t)! \quad [t \text{ persons committee}] \quad t = |A_i| \quad t \vdash i$$

$$\begin{matrix} \nearrow & \nwarrow \\ \text{fix committee} & \text{fix people left.} \end{matrix} \Rightarrow X = N \cdot t! (n-t)!$$

There are N committees so sum from $i=1 \dots N$

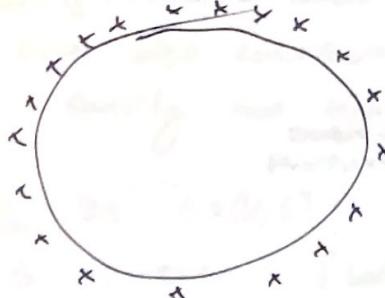
②

Combinatorics - Meet 5

Suppose A_1, \dots, A_N are k element subsets of $[n]$ such that $\forall i, j, A_i \cap A_j \neq \emptyset$ [each committee shares at least 1 member].

want: $N \leq \binom{n-1}{k-1}$

pf:



compute $X = \sum_{\text{all possible seatings}} \#A_i$'s seated together.

$\{$ [given a seating, how many A_i 's together]
To help to compute.

$N \geq 2^k$
[concerns, max $\binom{n}{k}$ committees]
lots of committees.

Method 1:

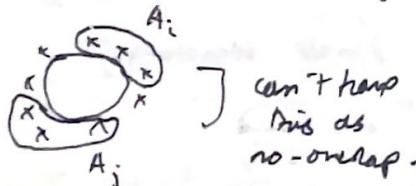
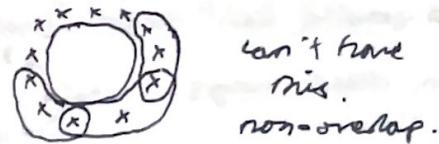
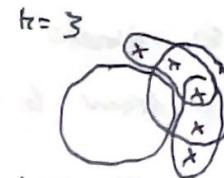
- For each committee A_i , will always contribute 1 to sum.

Showed A_i together in $\underbrace{k!}_{\substack{\text{seats members of } A_i \\ \text{committee}}} \underbrace{(n-k)!}_{\substack{\text{seats everyone} \\ \text{else.}}}$ seatings.

- So summing over all N committees, $X = N \cdot k! (n-k)!$

Method 2:

- For a given committee seating, how many committees are together.



For each seating, we can have at most k . [shift each by one till you get a single overlap with the committee you started with] [achieved by ~~all~~ committees are all apart by shifting by one].

So adding up over all N seatings [up to rotations, fix 1]

$$\therefore X \leq N \cdot k \cdot \# \text{ seatings} = k \cdot (n-1)! \quad [\text{fix 1 and } n-1 \text{ w/ overlaps}]$$

$$\therefore N \cdot k! (n-k)! \leq k! (n-1)!$$

$$\Rightarrow N \leq \frac{(n-1)!}{(k-1)! (n-k)!} = \binom{n-1}{k-1}$$

Proofs were messy at start & then got more streamlined

Graph Theory

Four Colour Theorem

- many wrong proofs
- proof was computer aided.

map of england: shape irrelevant. graphs model connectivity / adjacency.

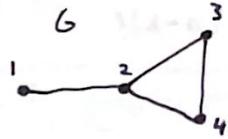
← ~~order~~ ordered pair of two sets.

Def: A graph, $G = (V, E)$ is the data of

1) a set V of vertices

2) a set E of ~~unordered~~ ordered pairs of distinct vertices [edges]

Example:



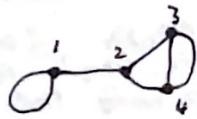
$$V = \{1, 2, 3, 4\}$$

$$E = \{\{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{2, 4\}\}\}$$

so infinite # graphs can exist. [not a finite structure]

can draw G in other ways:

Possible?



$$E = \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 1\}\}$$

not valid according to def.

But can loosen to define this as a graph [multigraph / graph].
and a simple graph is ~~one~~ defined ~~one~~ above
[not duplicates & loops].

Def: let $G = (V, E)$ be a graph. Let $v \in V$, the degree

$\deg(v)$ of v is the number of edges of G that come out of [are incident to]. degree $\deg(z) = 3$

Graphs

- $v_1, v_2 \in V$ are adjacent / neighbours $\Rightarrow \{v_1, v_2\} \in E$

Prop: $\sum_{v \in V} \deg(v) = 2|E|$

Pf: each edge contributes 1. let $G = (V, E)$ be a graph.
to exactly two terms of the sum.

Corollary: let $G = (V, E)$, the number of odd degree vertices
of G is even. [look at sum, need even number of odd numbers
to make it even].

Ex: the complete graph on n vertices, K_n has

$$V = [n], E = \{\{i, j\}, i, j \in [n], i \neq j\}$$

Ex: Path graph on n vertices, P_n .

$$V = [n], E = \{\{i, i+1\}, i \in \{1, \dots, n-1\}\}$$

Ex: Cycle graph on n vertices, C_n

$$V = [n], E = \{\{i, i+1\}, i \in \{1, \dots, n-1\}\} \cup \{1, n\}$$

Ex: Random graphs with n vertices

$V = [n]$ include $\{i, j\}$ in E with some fixed probability $0 < p < 1$

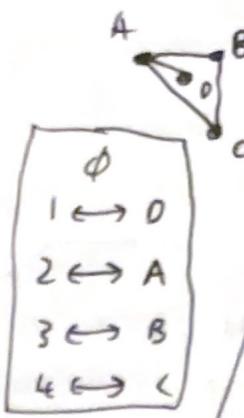
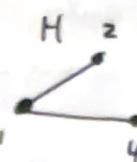
Def: Two graphs $G = (V, E)$ and $G' = (V', E')$ are isomorphic
if there is a bijection $\phi: V \rightarrow V'$ s.t.

$$\{v_1, v_2\} \in E \Rightarrow \{\phi(v_1), \phi(v_2)\} \in E'$$

[same structure, just named vertices differently.]

isomorphic graphs.

so $\phi(1) = 0$



$(1,4) \notin E$

Def: Let G be a graph $G = (V, E)$ be a graph, $H = (V', E')$ s.t.

$V' \subseteq V$, then H is a subgraph of G if $E' \subseteq E$ [subset graph]

Def: If $V' = V$, then H is a spanning subgraph [just delete edges].

If $E' = \{ \{v_1, v_2\} \in E \text{ s.t. } v_1, v_2 \in V\}$
then H is an induced subgraph of G

Take subset of vertices and keep all the edges remaining

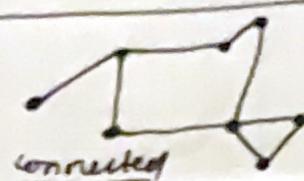
Def: An automorphism of $G = (V, E)$ is an isomorphism from G to G .

automorphism

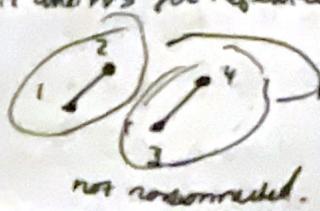
The automorphisms of G form a group $\text{Aut}(G)$ under compositions. [all the permutations of S_4 that preserve the group structure].

If there is a graph $G = (V, E)$ and H is a subgraph of G , we say G contains H .

Def: G is connected if for any $v_1, v_2 \in V$, G contains a path from v_1 to v_2 .



every v_1 to every v_2 path with no repeating vertices.



Walt allows for repeated vertices
connected components of G .

Def: A graph G is acyclic if it contains no cycles

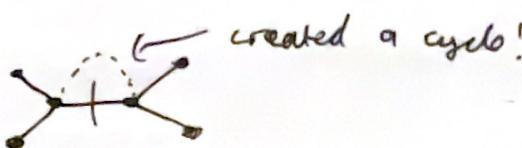
Def: A tree is a graph that is both connected & acyclic

[no root] Trees with 6 vertices

degree 3
vertex with
2 degree 2
neighbors

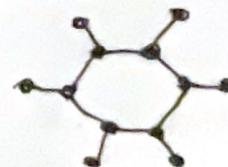
Thm: let $G = (V, E)$ be a tree, and ~~suppose~~ $e \in E$,
deleting e yields a disconnected graph. Then

Pf: If not, $\exists e \in E$ s.t. $G \setminus \{e\}$ s.t. $G \setminus \{e\}$ is connected. Since G is connected, there is a path P from v_1 to v_2 . Then P is also a path in G . adding e to P yields a cycle in G . $\Rightarrow G$ is not acyclic \Rightarrow to G a graph.



Thm: If $G = (V, E)$ is connected and deleting any edge disconnects G , then G is a tree

Pf: (formal in notes).



Trees are edge minimal connected graphs.
Several ways to define them.

Idea: Inductively prove that $|V| = |E| + 1$ for trees.
For a tree, if you can find a degree 1 vertex,
then you can delete it, show what's left is a
tree and proceed by induction.

Lemma: Every ^{finite} tree with ≥ 2 ~~vertex~~ vertices has a leaf.

Pf: [walk without turning around till you hit a dead end].

Consider all paths in G . There exists a path of length at least 2, [at least 2 vertices]. All paths are finite.
Find a maximal path [shortest one with as many vertices as possible] well defined question.

claim: endpoints are leaves.

If they weren't leaves, have two edges coming out of it, so can add \Rightarrow makes a longer path \times .

Thm: Every tree has a leaf

Pf: [strategy, consider a path in T that is as long as possible]

Consider a path in T that is as long as possible.

Endpoints of P are called v_1, v_2 . If v_1 is not a leaf, there is an edge, not in P that is incident to v_1 , say e .

Two cases for e : ① v_0 is not a vertex in P . Then, could add e and v_0 to P to get a longer path, contradicting P 's maximal length.
 [let v_0 be one other endpoint of e]

② v_0 is in P , then we get a cycle:

$$v_0 \xrightarrow{P} v_1 \xrightarrow{e} v_0 \quad [e \text{ not in } P]$$

contradicting that T is a tree.

$\Rightarrow v_1$ (and v_2) are leaves \Rightarrow every tree has a leaf. [really, at least 2] \square

Rmk: Infinite trees need not have leaves.

Corollary: If T is a tree with n vertices, then T has $n-1$ edges

Pf: Induction on n .

Base case: 1 vertex, no edges ✓

this can't have introduced a cycle

If T has $n+1$ vertices, choose a leaf v . Delete the leaf v & its edge. The resulting graph is still connected and acyclic, and a tree with n vertices $\Rightarrow n-1$ edges [by induction hypothesis], so T had n edges when we add v back into the graph.

[converse of corollary]

If G has n vertices, $n-1$ edges, and is connected, then G is a tree. $|V(G)| = n$, $|E(G)| = n-1$

Use the fact that trees are the edge minimal connected graphs. Tree is a connected graph s.t. if you delete any edge, then T is disconnected.

[contains all the vertices]

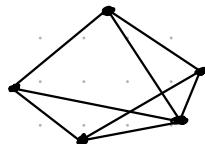
Pf: let G be a connected graph. Let H be a connected subgraph with as few edges as possible. [well defined as G finite]. so by 1st Thm proved about trees, H is a tree. H has all the vertices as H is a spanning subgraph $\Rightarrow \underbrace{|V(H)|}_{n} = \underbrace{|V(G)|}_{n}$. But as H is a tree, $\underbrace{|V(H)|}_{n} = |E(H)| + 1$

tree has 1 more vertex than edges

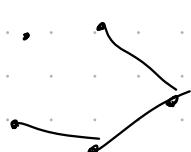
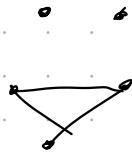
Started with $n-1$ edges, ended with $n-1$ edges, so $H = G$.

[haven't actually deleted any edges] $\Rightarrow G$ is a tree [as H is a tree] \square

Rmt: "Spanning tree" of a connected graph \iff connected spanning subgraph with as few edges as possible.



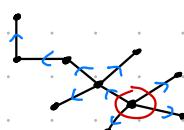
Rmt:



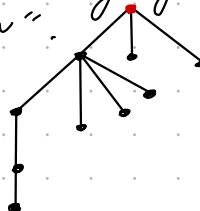
Adding an edge either joins two components or creates a cycle.

[connection between linear algebra & graph theory]

Rmt: Given a tree T & a vertex v , there is a unique way of assigning a direction to each edge s.t. all edges "point away from v ".



[because our graph is acyclic, this is well defined]



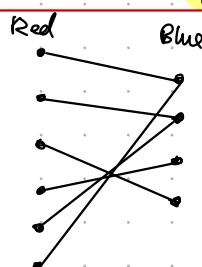
Problem of colouring graphs

Given a graph G , how many colours are needed to paint the vertices so that adjacent vertices get different colours?

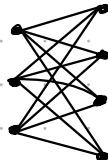
Want to partition the vertices into k subsets so that each subset contains no pair of adjacent vertices. "Proper k -colouring".

[all the red vertices would be one subset.]

If a proper k -colouring exists, then we say G is " k -colourable" or " k -partite". The minimum such k is $\chi(G)$, the vertex colouring number.

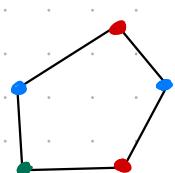


two-partite graph



complete-bipartite
 $K_{3,4}$

Thursday 10th November 2022

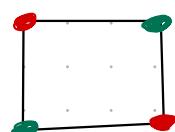


"Proper vertex 3-colouring of C_5 "

$$\chi(G) = 3$$

[min number of colours needed]

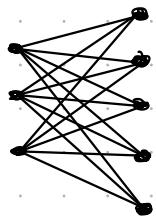
equally, partition V into subsets with no edges among the elements. "independent set of vertices"



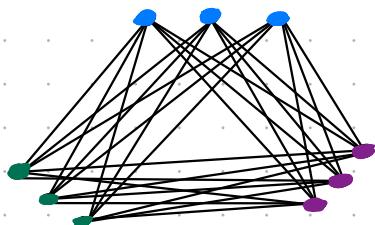
$$\chi(C_n) = \begin{cases} 2 & n \text{ even} \\ 3 & n \text{ odd} \end{cases}$$

Remark: $\chi(G)$ is NP-complete; no one knows an algorithm that is much better than just brute force.

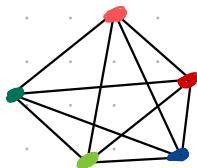
Recall: For $a, b > 0$, defined $K_{a,b}$



Def: For $a_1, \dots, a_r > 0$ complete r -partite graph K_{a_1, \dots, a_r}



What is the chromatic number of the complete graph?



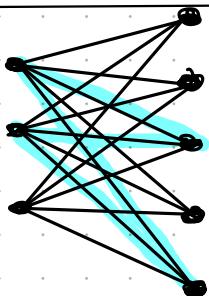
$$\chi(K_n) = n$$

For every choice of two colours, can find an edge between them

In a minimal vertex colouring of G , any two colour classes are joined by an edge:

$$|E| \geq \binom{\chi(G)}{2} = \frac{\chi(G)(\chi(G)-1)}{2}$$

Using quadratic formula & rearranging, $\chi(G) \leq \frac{1}{2} + \sqrt{2|E| + \frac{1}{4}}$



Bipartite graphs

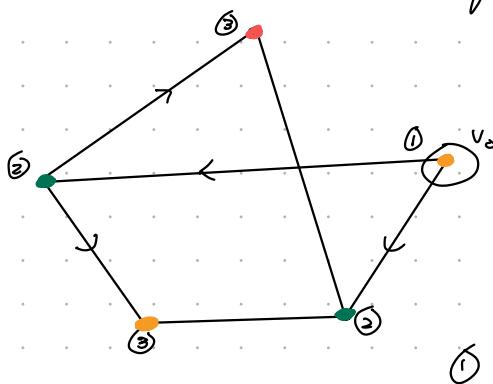
• Never have odd length cycles. [there & back]

Thm: A graph is bipartite \Leftrightarrow it has no odd cycles.

so no odd cycles \Rightarrow can two colour the graph.

Pf: Assume G is a connected graph with no odd cycles.

Every connected graph has a spanning tree. [a tree that uses all the vertices - keep deleting edges until graph is unconnected]. Let T be a spanning tree. Choose a root v_0 of T .



for each v , take the unique path in T from v to the root.

even length █
odd length █

Need to show this is a valid graph.

Need: For every edge of G , the endpoints are different colours. $e \in E(G)$

Cases:

• If $e \in E(T)$, the unique path from endpoints further from v_0 to v_0 is longer by 1 than the path from other endpoint to v_0

- Find a tree [spanning]
- Pick a root
- go along edges of tree & colour

If $e \notin E(G)$, Suppose the endpoints v_1 and v_2 are same colour.
Take the path P in T from v_1 to v_2 & add the edge e . (now a cycle)

Note: Along P , the colours alternate.

Since v_1 and v_2 are the same colour $\Rightarrow P$ has an odd number of vertices and adding edge $e \Rightarrow$ odd cycle. [but we assume graph has no odd cycles.] \times

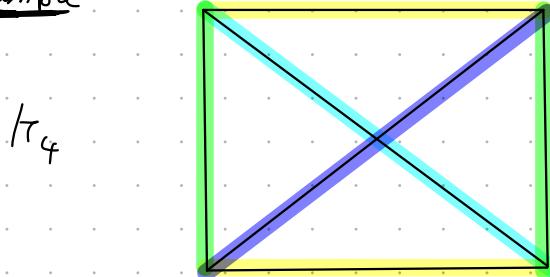
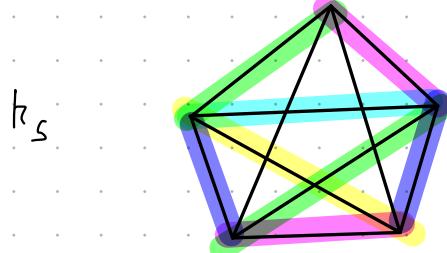
Edge Colouring

A proper edge-colouring of G is an assignment of a colour to each edge, such that if the two edges share a vertex, they are different colours.

"independent set of edges" \Leftrightarrow no two share a vertex

Def: $\chi'(G)$, edge colouring number is the minimum number of colours needed for a proper edge colouring.

Example

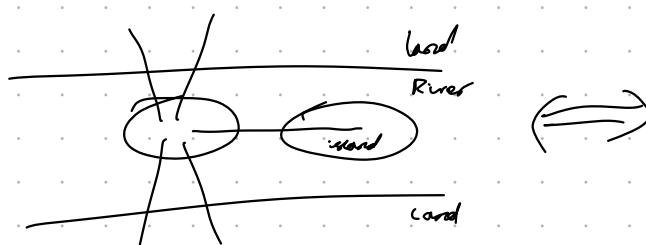
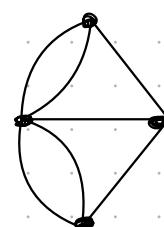


Observe: $\chi'(G) \geq \max \deg(G)$

[same as football teams tournaments]

Vizing's Thm: $\chi'(G) \in \{\max \deg(G), \max \deg(G) + 1\}$

GRAPH TRAVERSAL PROBLEMS



Def: An Eulerian tour of G is a walk on G that uses every edge exactly once and ends where it starts.

Obs: If G has a vertex of odd degree, impossible!

Thm: (Euler 1789) If G is connected and $\deg(v)$ is even $\forall v \in V$, then G has an Eulerian tour.

Cases to worry about:

- assume at a vertex v & there are no unused edges from v .
- If v is not the start, you enter & leave, even degree though so fine.
- If $v = v_0$ (start vertex), no unused edges only if $v = v_0$.
- Strategy: Start walking till you can't move anymore. If stuck, take original walk, delete all edges & then start a different one.

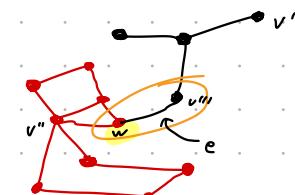
Pf: let w be the longest walk in G that doesn't repeat any edges. (hopefully this will have used all the edges).

Let v_0 be the ending vertex of w .

Cannot go further \Rightarrow all edges at v_0 are in w . [even number of these].

Since $\deg(v_0)$ is even, v_0 is also the starting vertex of w .
[otherwise can leave & enter]

w could be Eulerian walk \Rightarrow suppose it's not.



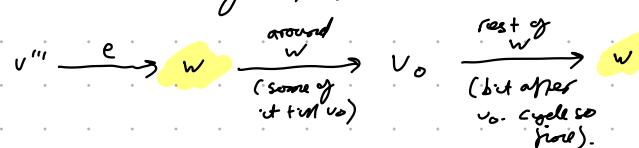
If G has unused edges, let v' be in this edge.

choose v'' in w , and take a path $v' \rightarrow v''$.

$\Rightarrow \exists$ vertex of w with an unused edge coming out of it.

We assumed w was of maximal length, but we can make a longer path.

New path is: start at v'' , walk along e , follow w



$\Rightarrow w$ is not the longest such path \Rightarrow contradiction. ■

Def: A Hamiltonian cycle/tour is a walk that passes through each vertex exactly once & ends where it starts.

A Hamiltonian tour of a graph G is a spanning cycle in G (walk in G that visits every vertex exactly once, and finishes where it starts).

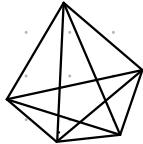
Eulerian Cycle	Hamiltonian Graph
<ul style="list-style-type: none"> - visit every edge exactly once <p style="border: 1px solid red; padding: 2px;">Edge = Eulerian</p>	<ul style="list-style-type: none"> - visit every vertex exactly once

- Deciding if a graph is Eulerian is easy: even degree
- " " " Hamiltonian is hard.

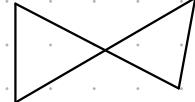
Examples

4! total Hamiltonian tours of K_5

Need lots of connections



Not Hamiltonian.



[one of the most elegant proofs in the module]

Thm: Suppose G is a simple connected graph with $n \geq 3$ vertices, such that every vertex has degree $\deg(v) \geq \frac{n}{2}$, then G has a Hamiltonian tour.

Pf: [Idea: need to construct a cycle. Will need to remember key ideas]

let G be a simple graph with $n \geq 3$ vertices and every vertex has degree $\geq \frac{n}{2}$

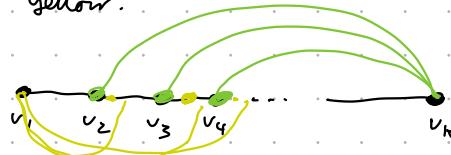
let P be a path in G of maximum length with vertices v_1, \dots, v_k

Since P is a path, we can't repeat vertices so $k \leq n$.

Note $\deg(v_1) \geq \frac{n}{2}$, $\deg(v_k) \geq \frac{n}{2}$ and all neighbours of v_1, v_k are in P as otherwise we would have a longer path.

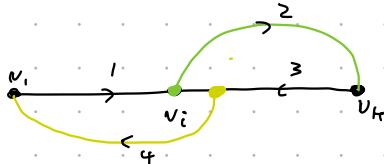
Since $\deg(v_k) \geq \frac{n}{2} \Rightarrow v_k$ has $\geq \frac{n}{2}$ neighbours in v_1, \dots, v_{k-1} , colour these green.

Since $\deg(v_1) \geq \frac{n}{2} \Rightarrow v_1$ has $\geq \frac{n}{2}$ neighbours in v_2, \dots, v_k . If v_{i+1} is a neighbour, colour v_i yellow.



we didn't need to state G connected explicitly, it follows from G simple with $\deg(v) \geq \frac{n}{2} \forall v$

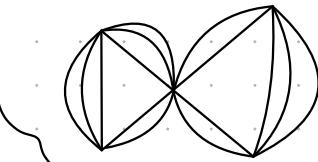
we have at most $\frac{n}{2} + \frac{n}{2} = n \geq k \geq k-1$ colours to v_1, \dots, v_{k-1} so at least one vertex must have both colours.



Consider the cycle C : $v_1 \rightarrow v_i$ along P

- Then edge v_i, v_k
- Then v_k to v_{i+1} backword along P
- Then edge v_{i+1}, v_1

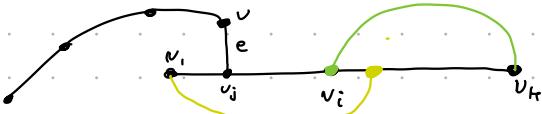
Note: "Simple has necessary!"



Need to show we haven't excluded any vertices in G from C . So claim C is a Hamiltonian cycle, so suppose it is not. Then there is a vertex v_0 not in C .

As G is connected, there is a path from v_0 to a vertex in P .

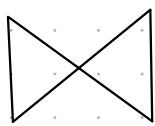
Then there is an edge e in this path between $v_j \in P$ and $v_i \in P$.



Start at v_i , travel along e to v_j , then travel around the cycle C in either direction. Stopping just before we return to v_j . This is a path with $k+1$ vertices contradicting that P is the longest path.

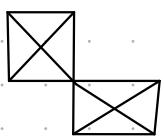
\Rightarrow all vertices of G lie in $C \Rightarrow C$ is a Hamiltonian cycle.

Q: Could we improve on $\frac{n}{2}$?



$$n=5$$

$$\deg(v) \geq 2$$



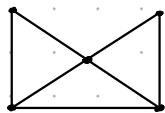
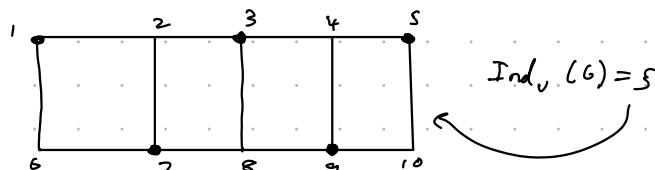
$$n=7$$

$$\deg(v) \geq 3$$

Matchings

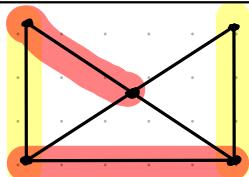
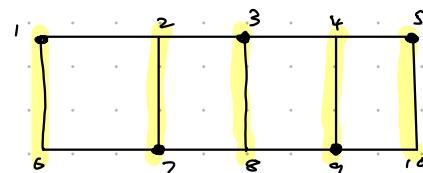
17/11/22

A set of vertices of a graph G is independent if there are no edges joining any two of them.



Def: The vertex independence number $\text{ind}_v(G)$ of a graph G is the maximum size of an independent set of vertices.

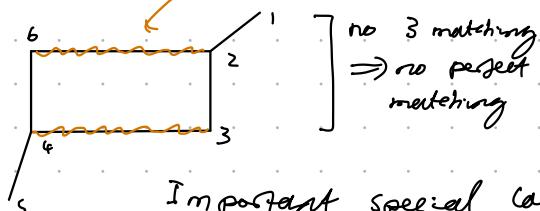
Def: a set of edges of G is independent/matching if no two share a vertex



Def: The matching number $\text{ind}_E(G)$ is the maximum size of a matching.

Note: $\text{ind}_E(G) \leq \frac{|V(G)|}{2}$ {every edge uses two vertices}

Def: A matching is perfect if it has $\frac{1}{2}|V(G)|$ edges and we say G admits a perfect matching.

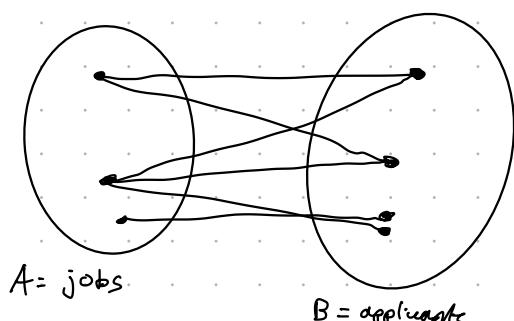


best we can do is two.

no 3 matching
⇒ no perfect matching

Intuition: Computing $\text{ind}_v(G)$ is hard,
 $\text{ind}_E(G)$ is easier

G is bipartite. $V(G) = A \cup B$, all edges join A and B .



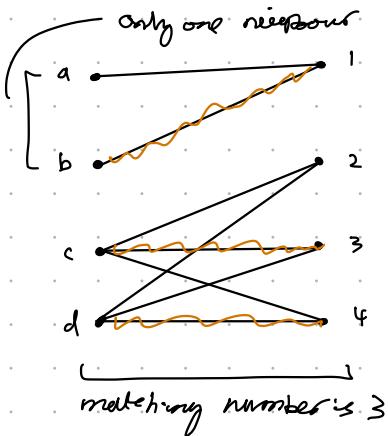
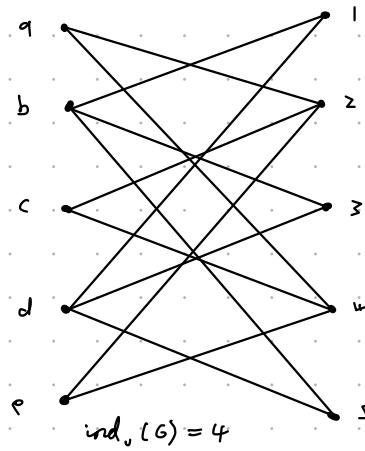
$A = \text{jobs}$

$B = \text{applicants}$

Given a bipartite graph, is there a matching that uses every vertex of A ?

Note, if G is bipartite
 $\text{ind}_E(G) \leq \min(|A|, |B|)$

For a perfect matching, we need $|A| = |B|$.
we say G has a matching of A if $\text{ind}_E(G) = |A| \Rightarrow$ every vertex in A is used in the matching.



Problem is 9, c and e only have 2 neighbours

necessary & sufficient condition for matching

In order to have a matching of A [match everything in A], we must have that for every $S \subseteq A$, we have $|N(S)| \geq |S|$ [Hall's condition]

↑
Neighbours of $S = \{b \in B : (s, b) \text{ is an edge for some } s \in S\}$

Thm: If G is a bipartite graph with $V(G) = A \cup B$ & G satisfies Hall's condition, there is a matching of A . [Hall's thm 1935]

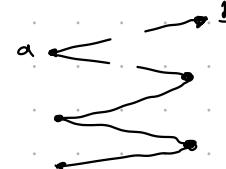
Pf: By induction on the size of A . $|A|$.

If $|A|=1$, since $|N_G(A)| \geq 1$, G has an edge so there is a matching of A .

Now suppose that $|A| > 1$ and thm true for smaller A . Two possibilities

① For every non-empty proper subset $S \subseteq A$, $|N_G(S)| \geq |S| + 1$ Stronger

In this case, pick an edge $e = (a, b)$ & remove e , and a and b (& all edges involving a, b) from G to form G' .

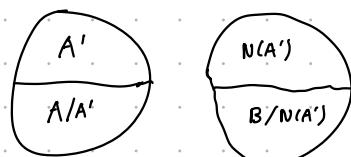


The new graph G' has $A' = A \setminus \{a\}$ and $B' = B \setminus \{b\}$
& for all $S \subseteq A'$, $|N_{G'}(S)| \geq |N_G(S)| - 1$ [removed at most 2]
 $\geq |S| + 1 - 1$
 $= |S|$

So Hall's condition holds for G' so by induction, G' has a matching M' for A' .
 $M \cup \{e\}$ is a matching for A in G .

② There is a proper non-empty subset $A' \subseteq A$ with $|N_G(A')| = |A'|$

Goal:



we will find matchings of A' & of A/A' that do not share vertices.

Since $|A'| < |A|$ by induction there is a matching of A' . The endpoints of this matching in B are a subset of $N_G(A')$ of size $|A'|$, so equals $|N_G(A')|$.

Now delete A' and $N_G(A')$ from G to get a new graph G'' . This is bipartite with partitions A/A' & $B \setminus N_G(A')$.

We claim G'' satisfies Hall's condition [our one too!, so better use it].

$\forall x \quad S \subseteq A \setminus A'$

$$|N_{G''}(S)| = |N_G(S \cup A')| - |N_G(A')| \quad [G \& G'' \text{ don't overlap, }]$$

$$\geq |S \cup A'| - |N_G(A')|$$

$$= |S| + |A'| - |A'|$$

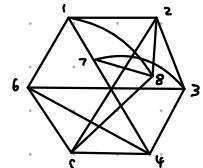
$= |S| \Rightarrow G''$ satisfies Hall's condition, G'' smaller so by induction, there is a matching for $A \setminus A'$ in G'' .

We have a matching of A' and $A \setminus A''$, don't share neighbours. Union of these two matchings gives a matching of A in G .

Thm: Petersen (1891). Let $G = (V, E)$ be a graph where every vertex has degree $2t$ for some constant $t \geq 0$. Then G has a spanning subgraph that is a union of disjoint cycles.

no bipartite graphs. Look more about proof than statement.

Pf: If G is not connected, we'll find the spanning cycle for each connected component separately \Rightarrow assume G is connected.



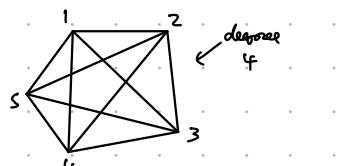
Since the degree of every vertex is even $V = \{v_1, \dots, v_n\} \Rightarrow G$ is Eulerian.

\Rightarrow There is an Eulerian tour w . It visits every edge once. [need a bipartite graph]

We now define a bipartite graph G' with vertices $A = \{a_1, \dots, a_n\}$, $B = \{b_1, \dots, b_n\}$ & an edge connecting a_i to b_j if (v_i, v_j) is an edge in the tour w . [no edge a_i, b_i as no loops]

In Alg, will show a regular bipartite graph has a perfect matching, so need to show G' is regular.

Note: The degree of $a_i \in A$ is the number of edges (v_i, v_j) for some j in w .



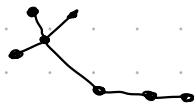
in t times
out t times

Tour: 1 2 3 4 5 | 3 5 2 4 1

This is t because the tour leaves v_i exactly t times

$\Rightarrow G'$ has a matching, translate matching back to edges of G , we find a subgraph where every vertex has degree 2, so is a union of cycles.

Cayley's Tree enumeration formula -

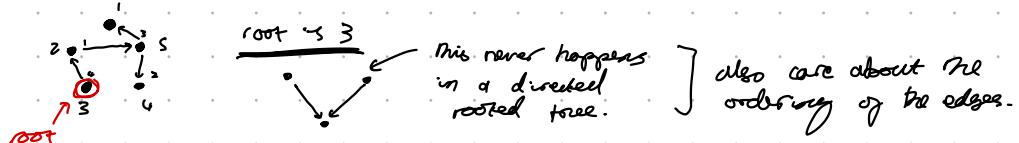


$\frac{7!}{3!}$ for $n=7$ labelled vertices, found 16807 labelled trees.
 n = 2 3 4 5 6 7
 1 3 16 125 1296 16807

formula: $\boxed{n^{n-2}}$ non-trivial counting problem.

- Bijective proof of formula: trees with n vertices with n sequences of $n-2$ elements.
- Linear algebra proof: [in lecture notes, also electrical circuits]
- Double counting: find same object you count in two different ways. [not clear why this is the right quantity to count].

P1: let X denote the set of sequences of directed edges that when put together, make a directed rooted tree.



way ① to find $|X|$:

T_n = number of labelled trees with n vertices
 $|X| = T_n \cdot n \cdot (n-1)!$ number of orderings of the $(n-1)$ edges of the tree [choosing a sequence of ways to pick a root]
 number of ways to pick length $n-1$ of directed edges.

way ② to find $|X|$:

choose an edge.

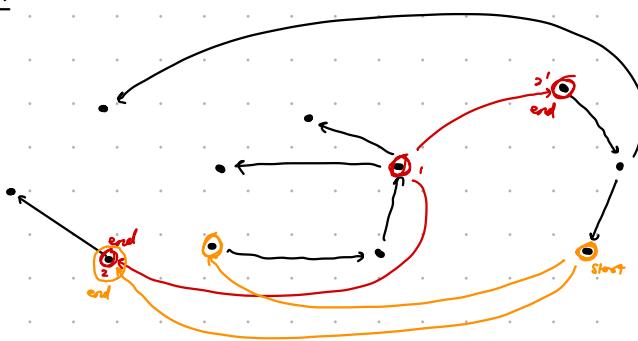
- 5 choices for where to start arrow
 - 4 choices for where to end arrow $\Rightarrow n(n-1)$ choices for 1st arrow next edge is harder...

Start at 4: 3 choices

Start at 1, 2, 3, 4: 3 choices $\Rightarrow 5+3 = 8$ choices for 2nd arrow
 Start at 5: 3 choices

Induction step:

k th arrow



At the k th step: ($k-1$ arrows chosen already)

have a rooted forest of 3 $\binom{n}{k-1}$ trees. choosing where to end the k th arrow. can't end in own tree, only at the root of a different tree

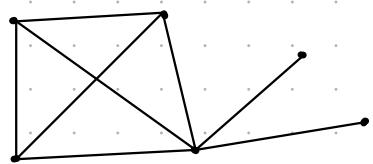
• pick start: n choices
 • end vertex: root of a different tree. There are $n-(k-1) = n-k+1$ but one less: $n-k$

(*) Each time we add an edge, we reduce the number of connected components. Started with n connected components [n vertices] & each time we add an edge, take one away, so added $k-1$ edges so $n-(k-1)$ trees at k th step.

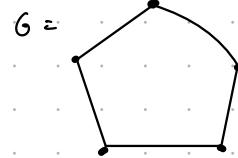
$$\Rightarrow |X| = (n(n-1))(n(n-2)) \dots (n(n-k)) = \underbrace{n^{n-1} (n-1)!}_{\text{from way 1}} = T_n \cdot n \cdot (n-1)! \Rightarrow T_n = n^{n-2}$$

Observation: If G contains K_r as a subgraph [can find r of the vertices so they're all adjacent], then $\chi(G) \geq r$

\Rightarrow ask the reverse Q: if $\chi(G) = r$, then does G contain K_r ?



No:



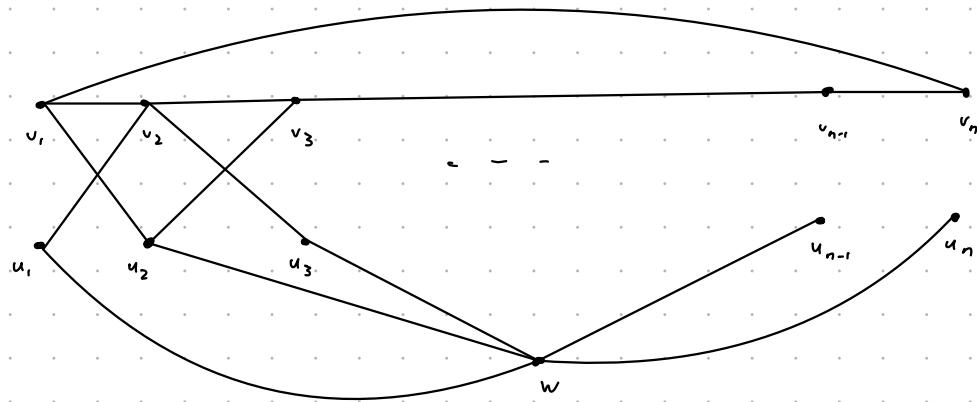
$\chi(G) = 3$
but no \triangle

Thm: For any r there is a graph M_r with $\chi(M_r) = r$ and no triangles (no K_3)

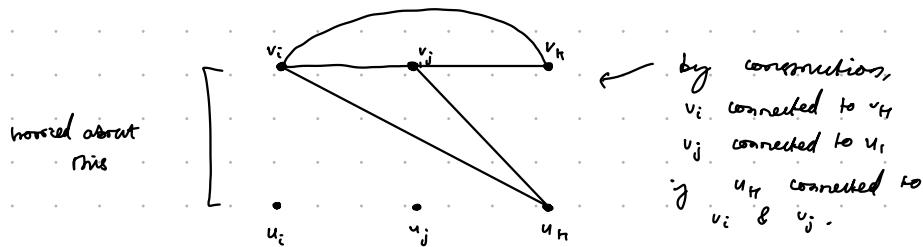
Pf: By construction; we define M_r recursively.

$M_2 = \text{---}$ $\chi(M_2) = 2$, no triangles.

Given M_{r-1} , we call the vertices of M_{r-1} v_1, \dots, v_n . [draw in a line]



- no triangles in the v s \Rightarrow by induction can't have 3 v s
- no edges between u s \Rightarrow triangle can't contain two u s
- triangle can't contain w as u, w, v but u s not connected. [would need to connect two u s but u s not connected]
- only remaining case is v_i, v_j, u_h with edges between, with i, j, h distinct.



Now, claim $\chi(M_r) = r$

Pf: induction

$M_2 = \text{---} \Rightarrow \chi(M_2) = 2$

To r -colour M_r :

- First ($r-1$) colour M_{r-1} [can do by induction] v_i coloured
- Then colour u_i same colour as v_i [need to check nothing invalid]
- Colour w the last colour.

Need to show there's no valid $r-1$ colouring.

contradiction & induction

p.f.o.

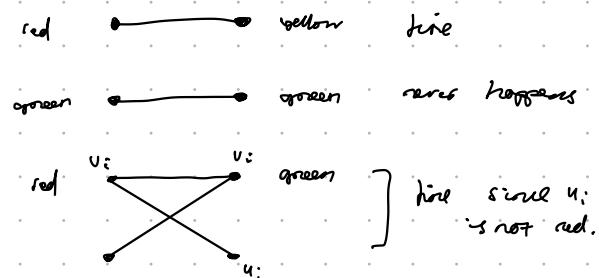
no problems because many
 $\times \times \times \dots$ no problems

Suppose there was a valid $(r-1)$ colouring of M_r . Suppose that W has colour green.

$\Rightarrow u_i$ is not green for all i .

\Rightarrow re-colour M_{r-1} [all the v_i]: If v_i is green, then change its colour to that of u_i .

→ This colouring doesn't have green in it.
 If the result is a valid colouring then we found a valid $(r-2)$ colouring of M_r which contradicts induction hypothesis.

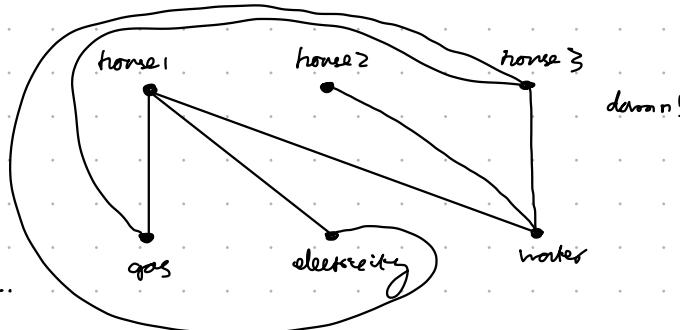


Recall, G has no odd cycles $\Rightarrow G$ is 2-colourable.

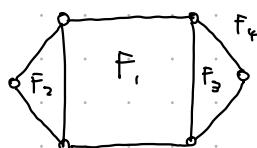
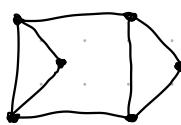
Thm: (Erdős) For any $k, r > 0$, there exist graphs G with chromatic number $\chi(G) > r$ and no cycles of length less than k .

Def: A graph G is planar if it can be drawn in the plane \mathbb{P}^2 without edges crossing.

Is $K_{3,3}$ planar?
 not clear. Have to draw all the possible arrangements.
 not combinatorial...



Given a drawing of a planar graph, its faces are the connected components of $\mathbb{P}^2 \setminus G$.



Stretch, Monotony in L.N.

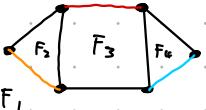
Suppose we have a drawing of a planar graph with $n = |V|$, $e = |E|$, $f = \# \text{faces}$

Thm: Euler's Formula

$$n - e + f = 2$$

Pf:

delete edges till spanning tree.

Add back in 

so we divide face in two. Edges P , R same
 $-e + f$ stays the same.

Worked for spanning tree & each time we add an edge, we also add a face so $-e + f$ doesn't change.

By lemma, drawings of faces have one face. And formula reduces to one that holds $n - e = 1$.

Corollary: A simple (no double edges) planar graph with $n \geq 3$ vertices has at most $3n - 6$ edges.

Pf: Every face of a planar drawing of G has at least 3 sides.

Each edge contributes to exactly 2 sides, so $3f \leq 2e$

$$\text{Using } 2 = n - e + f \Rightarrow 2 \leq n - e + \frac{2}{3}e = n - \frac{e}{3} \text{ sides edges.}$$

$$\Rightarrow 6 \leq 3n - e \Rightarrow e \leq 3n - 6$$

Corollary: If G is planar, G has a vertex of degree at most 5

Pf:

?

Note: we only get equality if ... and only if every face has exactly 3 sides (is a triangle) [balls out of pool]

Corollary: K_5 is not planar Pf: $n = 5, e = 10, \Rightarrow 10 \not\leq 3 \times 5 - 6 = 9, K_5$ is not planar.

Corollary: $K_{3,3}$ is not planar

3 houses, 3 utilities, can you connect?

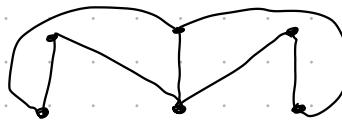
Pf: $K_{3,3}$ has $n = 6, e = 9$. By Euler, if $K_{3,3}$ is planar, then $K_{3,3}$ has 5 faces. $[6 - 9 + f = 2 \Rightarrow f = 5]$

This is a bipartite graph. So every cycle goes top, bottom, top, bottom etc. So as $K_{3,3}$ is bipartite, every face has at least 4 sides.

$$4f \leq 2e$$

But $20 \not\leq 18 \Rightarrow K_{3,3}$ is not planar.

etc...



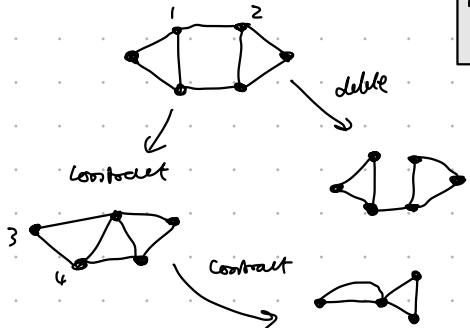
What ideas should I steal from proofs to use in my own questions?

Def: Given a graph G & an edge e of G , we can contract G :

- ① remove e & merge endpoints.
- ② delete e .

Def: Given a graph G , a vertex v can be deleted (remove v & all edges connecting it).

Def: A graph H is a minor of a graph G if it can be obtained from G by repeated edge deletions.

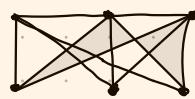


note: don't use to prove a thm about simple graphs. Double contraction

↓
↔ bond!

" K_5 and $K_{3,3}$ are the main obstructions to a graph being planar."

Can use the fact that $K_{3,3}$ and K_5 are not planar to show more graphs not planar.



Note: If G a planar graph, H a minor of G , then H is planar.

If G has a minor that is not planar, then G is not planar.

This is enough!

In particular, if G has K_5 or $K_{3,3}$ as a minor, then G is not planar.

WTP: If G has no K_5 or $K_{3,3}$ minor, then it is planar.

Pf: By induction on n [number of vertices]

Thm: A graph is planar if it does not have a K_5 or $K_{3,3}$ minor

SKETCH

PROOF

WTP: If G has no K_5 or $K_{3,3}$ minor, then it is planar

Pf: By induction on n [number of vertices].

Base case: $n=4$. Every simple graph on 4 vertices is a subgraph of K_4 , which is planar.

If G is not simple, 

Now suppose Thm holds for vertices $n-1$. G has n vertices & no K_5 or $K_{3,3}$ minor.

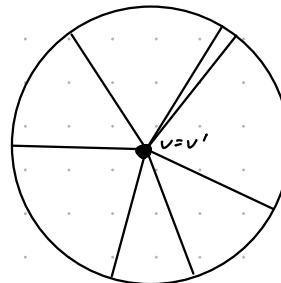
Now, pick an edge, $\{v, v'\}$ & contract it to get a new graph G' .

Question: Is G' planar? \Rightarrow Does

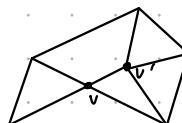
G' has no K_5 or $K_{3,3}$ minor as they would also be minors of G .

G' also has $n-1$ vertices. By induction, G' is planar. Draw it.

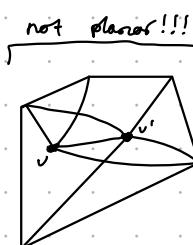
"Near" $v'=v$, the picture is like:



To draw G , we want to split v and v' .



But could have



claim: There are no only problems when I split up v and v' .

$K_{3,3}$ minor

↓

$K_{3,3}$ minor

The 4/5/6 colouring theorem

We will prove the 5/6 colour theorem.

$\chi(G) \leq 4$ [If G is planar]

HARD

The minimum number of colours needed to colour the vertices of G so that adjacent vertices have different colours

Let's prove the 6 colour Thm

1/12/22

Thm: If G is planar, $\chi(G) \leq 6$

Pf: Assume G is simple & connected [why?]

[connected: if separate, question reduces to connected]

[Simple: can delete all extra edges]. Induct on the number of vertices with base case $n=1$.

Pf: See lecture on 1/12/20

Thm: If G is planar, $\chi(G) \leq 5$

Pf: Assume G simple & connected. Induct on $n = \#$ vertices of G . Base case $n=1$.

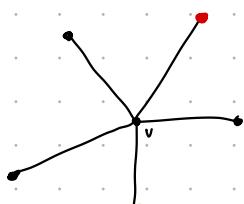
Assume Thm true for graphs with fewer than n vertices, $\chi(G) \leq 5$ planar with n vertices.

Since G is planar, it has a vertex v of degree at most 5.

Delete v & by induction, 5 colours the resulting graph G' . [$n-1$ vertices in G']

If the neighbours of v have at most 4 colours, then there is a colour left for v . [every case, p64]

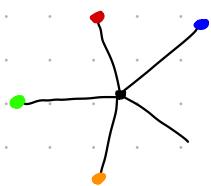
So assume the neighbours have 5 colours.



Consider the subgraph of vertices coloured red & yellow and edges between them.

If the red & yellow neighbours of G live in different connected components of the subgraph, we can switch red & yellow of one component to get no neighbour of v red so can colour v red.

Otherwise, there is a red-yellow path connecting the red & yellow neighbours of v .



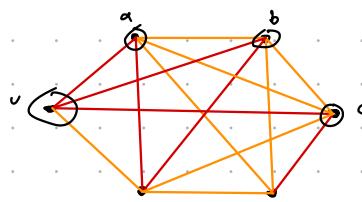
Either blue/green neighbours are in different connected components so can switch & have colour left for v

Or there is a blue-green path from the neighbours to green neighbour.

Red-yellow, blue-green paths must cross \Rightarrow impossible as G is planar.

Idea: draw paths, can't cross \Rightarrow 5 colours.

Question: If 6 ppl in a room, can you find 3 ppl who all know each other or 3 who all don't know each other.



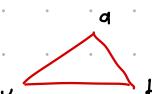
Ramsey Theory

Yes!

Proof: choose a vertex v . There exist 3 red or 3 yellow edges from v . Call them a, b, c . WLOG, suppose 3 red edges from v . Call the endpoints a, b, c . Consider edges between a, b, c .

If red edge among a, b, c then triangle $v \triangle a, b, c$

If not \exists



Given a 2-edge colouring of K_{10} , can I find a red K_3 or a yellow K_4 ?

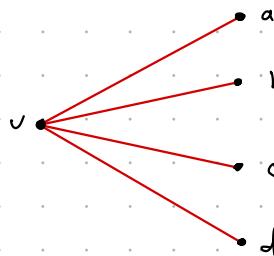
[10 ppl in a room, 3 ppl know each other or 4 who don't, can you find it?]

Pf: Each vertex has degree 9. choose v .

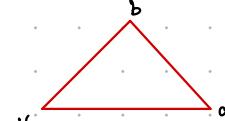
From v there exist either 4 red or 6 yellow edges.

case 1

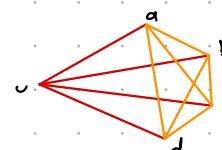
First, suppose there are 4 yellow edges.



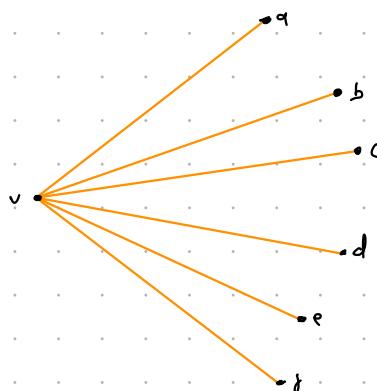
If 3 red edges among a, b, c, d ,
then we have a red triangle



Then all edges between a, b, c, d are yellow, so we have a yellow K_4 with vertices a, b, c, d .



case 2



Among a, b, c, d, e, f can find either

or

Immediately done

add v & get a yellow K_4

done \checkmark

Thm (Ramsay): For any $t, l > 0$, I can find a number $R(t, l)$ s.t. every 2 edge colouring of $K_{R(t, l)}$ has a red K_t or a yellow K_l .

$R(t, l)$ is the minimum such number.

Shows $R(3, 3) \leq 6$, $R(3, 4) \leq 10$.

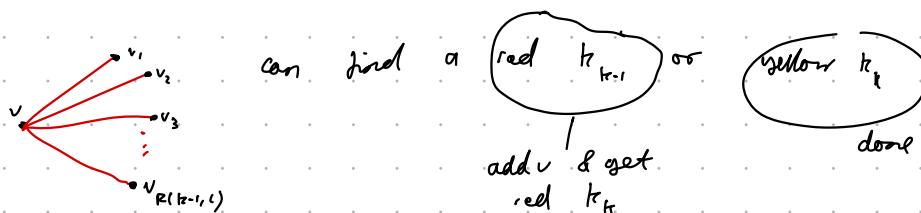
Pf: Work in $K_{R(t-1, l) + R(t, l-1)}$

Choose v . From v , there are $R(t-1, l) + R(t, l-1)$ edges.

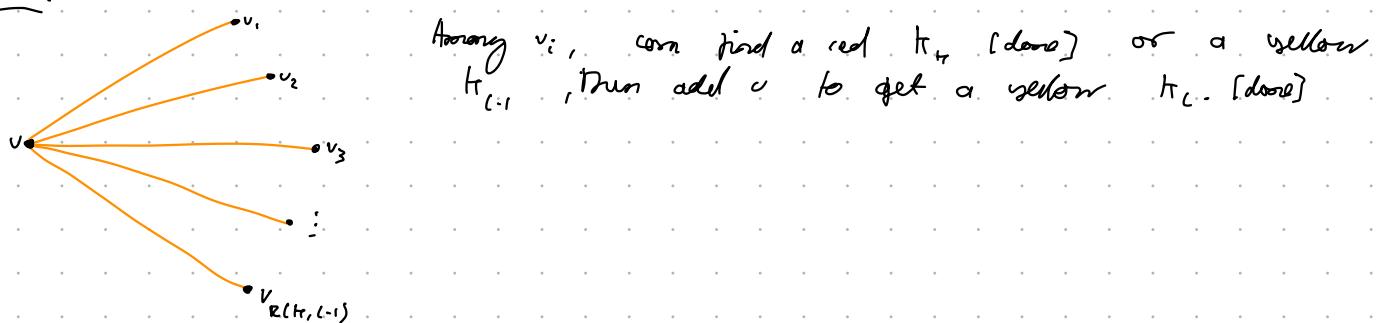
Can find either $R(t-1, l)$ red or $R(t, l-1)$ yellow edges.

[If not, total # edges from v would be $\leq R(t-1, l) - 1 + R(t, l-1) - 1$ $\nless \deg(v)$]

case 1:



case 2:



Q: What structures always show up in sufficiently large graphs?

$$R(t, l) \leq R(t-1, l) + R(t, l-1)$$

$$\text{Induction proof: } R(t, l) \leq \binom{t+l-2}{t-1}$$

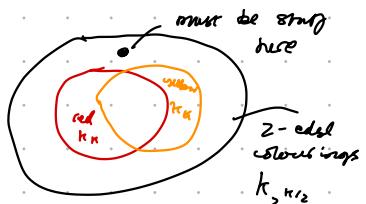
using proof of theorem,
we can find an
upper bound. Lower
bounds are hard...

Lower Bounds for $R(t, l)$

[using random graph theory]

Thm: $R(t, k) \geq 2^{\frac{t}{2}}$

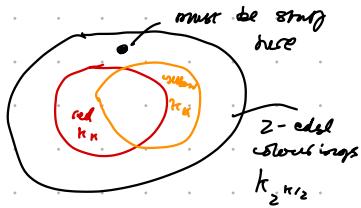
Pf:



Goal: If $n \geq 2^{\frac{t}{2}}$, then the # 2-edge colorings of K_n with red $K_t \leq \frac{1}{2} 2^{\frac{t}{2}}$

Thm: $R(k, k) \geq 2^{\frac{k}{2}}$

Pf:



Goal: if $n = 2^{\frac{k}{2}}$, then the # 2-edge colourings of k_n with red k_k $\leq \frac{1}{2} 2^{\frac{k}{2}}$

for each choice of k vertices

Snaps thinking: From the possible k_n , how many graphs are they in?

Count $\sum_{\text{2-edge colourings of } k_n} \# \text{red } k_k$

For k chosen vertices, they form a red k_k in $2^{\binom{n}{2} - \binom{k}{2}}$ edge colourings

Total: $\sum_{\text{2-edge colourings}} \# \text{red } k_k = \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}}$

2-edge colourings with at least one red k_k is \leq that sum

Since each contributes ≥ 1 to the sum.

$\sum_{\text{2-edge colourings}} \# \text{red } k_k = 0 + 0 + 2 + 4 + 0 + 0 + \dots$

we want this

$\left(\text{One number of 2-edge colourings with a red } k_k \right) \leq \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} < \frac{1}{2} \cdot 2^{\binom{n}{2}}$

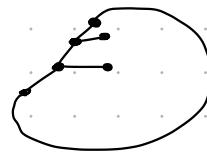
$$\begin{aligned}
 \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} &= \frac{n \cdot (n-1) \cdots (n-k+1)}{k \cdot (k-1) \cdots 2 \cdot 1} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \\
 &< \frac{n^k}{k \cdot (k-1) \cdots 2 \cdot 1} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \quad k! < 2^k \\
 &< \frac{n^k}{2^k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \quad n = 2^{\frac{k}{2}} \\
 &\leq \frac{2^{\frac{k^2}{2}}}{2^k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} \\
 &= 2^{\frac{k^2}{2} - k - \binom{k}{2}} \cdot 2^{\binom{n}{2}} \\
 &= 2^{\frac{k^2 - 2k}{2} - \frac{k(k-1)}{2} + \binom{n}{2}} \\
 &= \frac{1}{2^{\frac{k}{2}}} \cdot 2^{\binom{n}{2}} \\
 &\leq \frac{1}{2} \cdot 2^{\binom{n}{2}}
 \end{aligned}$$

\Rightarrow There exists a 2-edge colouring with no red k_k or yellow k_k

$\Rightarrow R(k, k) > 2^{\frac{k}{2}}$

Thm: Fix $k > 0$. Pick $r > 0$. Pick n such graphs with no cycles of length $\leq k$ with arbitrarily high chromatic number.

Pf: Fix $k > 0$, and fix $r > 0$. Want no short cycles (length less than k), but chromatic number r loose.



For n very large, pick a graph G by taking n vertices & for each pair, add an edge with probability $p = \frac{1}{n^{1-\varepsilon}}$ for $0 < \varepsilon \ll 1$ [ε very small] (ε will be $\frac{1}{k}$ good enough)

Claim 1: On average, this graph created G has at most $\frac{1}{2}(k-2)n^{k\varepsilon}$ short cycles.

For each candidate cycle (list of k vertices v_1, \dots, v_k), this contributes to the average with probability p^k . [probability that k vertices give a k -cycle]

$$\begin{aligned} E_{k\varepsilon} &= \left(\text{Expected number of } k\varepsilon \text{-cycles} \right) = \frac{\frac{n \text{ choices for 1st, } n-1 \text{ for 2nd}}{k-2} \times p^k}{\substack{\text{don't care about order} \\ \text{can reverse direction}}} \times p^k \quad \left[\begin{array}{l} \text{Expected number of } k\varepsilon \text{-cycles.} \\ \text{traces probability that } k\varepsilon \text{-cycle exists} \end{array} \right] \\ &\leq \frac{\frac{n^k}{2} \cdot p^k}{2} \\ &\leq \frac{n^k p^k}{2} \quad \left[\text{coarse-estimate} \right] \end{aligned}$$

But should add up E_3, E_4, \dots, E_k [discount E_2 & E_2 - root cycles]

$$E_3 + E_4 + \dots + E_k \leq \sum_{i=3}^k \frac{n^i p^i}{2} = \sum_{i=3}^k \frac{1}{2} n^{i\varepsilon} \leq \sum_{i=3}^k \frac{1}{2} n^{k\varepsilon} = \frac{1}{2}(k-2)n^{k\varepsilon}$$

Claim 2: If n is large, G is unlikely to have more than $\frac{n}{2}$ short cycles.

Markov's Inequality: $P(\text{at least } \frac{n}{2} \text{ short cycles})$,

[in worst case, where every graph has $\frac{n}{2}$ or zero short cycles]

$$E = \sum p + o(1-p)$$

$$\text{Markov: } p \leq \frac{2}{n} \cdot E < (k-2) n^{k\varepsilon-1} \quad k\varepsilon-1 < 0$$

so as $n \rightarrow \infty$, $p \rightarrow 0$ so G unlikely to have short cycles.

[if you decrease p s.t. no short cycles, will not have high chromatic number.]

Claim 3: If n large, then with high probability, G will satisfy

$$\text{ind}_r(G) \leq \frac{n}{2r}$$

why enough? Pick out G , it will have no more than $\frac{n}{2}$ short cycles.

Delete a vertex from each cycle. Call the resulting graph H . H now has no short cycles. Want H to have high chromatic number, $\chi(H) > r$. As each colour is in an independent set, its enough to say

$$\text{ind}_r(H) < \frac{\# \text{VC(H)}}{r} \quad (\text{since each colour class is an independent set})$$

Now, can't pick out all vertices with r independent sets.

will imply that $\chi(H) > r$

so as at least $\frac{n}{r}$ vertices left in H ,

$$\text{ind}_r(H) < \frac{n/2}{r} \left(\leq \frac{\#V(H)}{r} \right)$$

Q: $\text{ind}_r(G) \geq \text{ind}_r(H)$? H created only by deleting vertices.

True \therefore we got H by deleting vertices \Rightarrow vertex independent number can't go up.

NOTE: proof before, red edge or yellow edge. Now edge or no edge. Same as finding a yellow k_r . Very similar.

Pf of claim 3: For any given $\frac{n}{2r}$ vertices, probability that they form an independent set in G . There are $\binom{\frac{n}{2r}}{2}$ edges, for each to not exist $(1-p)$.

$$\rightarrow (1-p)^{\binom{\frac{n}{2r}}{2}}$$

Probability that $\frac{n}{2r}$ vertices form an independent set of size $\frac{n}{2r}$

$$\text{Expected \# of such independent sets} = \binom{n}{\frac{n}{2r}} \cdot (1-p)^{\binom{\frac{n}{2r}}{2}}$$

[choosing from $\frac{n}{2r}$ vertices]

Worst case scenario: $E = 1 \cdot \text{Prob}(\text{independent set}) + 0(1 - \text{Prob}(\text{independent set}))$

$$\text{Markov} \Rightarrow \text{Prob}(\text{indep set}) \leq \binom{n}{\frac{n}{2r}} \cdot (1-p)^{\binom{\frac{n}{2r}}{2}}$$

$$= \binom{n}{\frac{n}{2r}} \cdot \left(1 - \frac{1}{n^{1/2}}\right)^{\binom{n/2r}{2}}$$

$\xrightarrow[\text{Worst}]{n \rightarrow \infty} 0$

Small # independent sets \Rightarrow high chromatic number.

$$\text{WTS: } \lim_{n \rightarrow \infty} \binom{n}{\frac{n}{2r}} \cdot \left(1 - \frac{1}{n^{1/2}}\right)^{\binom{n/2r}{2}} = 0 \quad [\text{see notes}]$$