

Week 1 - Intro to dynamical Systems & stability

A system of ODEs

$$\dot{x}_1 = f_1(x_1, \dots, x_n, t)$$

⋮

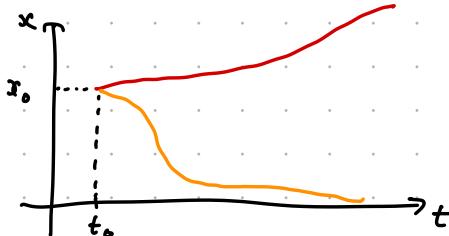
$$\dot{x}_n = f_n(x_1, \dots, x_n, t)$$

$$\frac{dx_i}{dt}$$

Autonomous systems
so our f_1, \dots, f_n
doesn't depend on
 t and $n \leq 3$
Simplification!

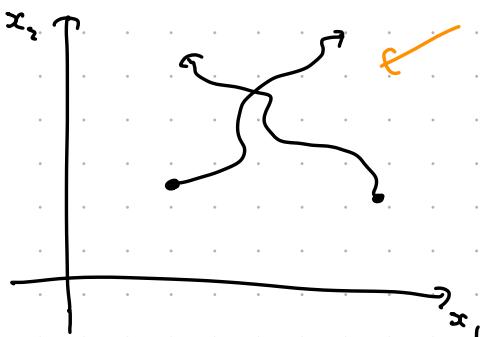
Assume existence and uniqueness of solutions. This means:

• 1D:

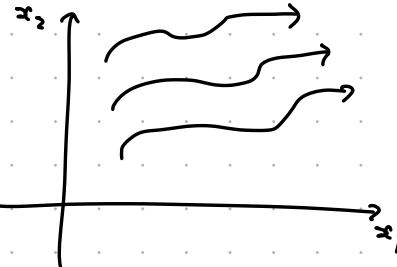


either increasing or
decreasing but
not both
or contradictions.

• 2D:



solutions can't cross in 2d.
(contradicts uniqueness) we get
that trajectories never cross

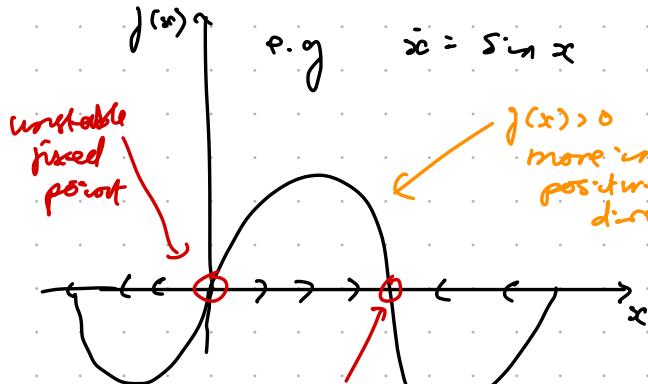


Def: $x_0 \in \mathbb{R}^n$ is an initial condition
& the path given by $x(t) \in \mathbb{R}^n$
is called the trajectory corresponding
to x_0 .

First order Systems

$$\dot{x} = f(x)$$

independent variable
doesn't appear
autonomous.



$f(x) > 0$ so
more in
positive
direction etc

Def: A fixed point x^* is
stable if all sufficiently small
deviations from x^* damp
out over time.

- ① If all solutions that start near x^* stay near x^* forever, we say that x^* is Lyapunov stable.
Simplest type
- ② If all solutions that start near x^* converge to x^* (as $t \rightarrow \infty$)
then x^* is asymptotically stable.
no mention of how long
- ③ If solutions converge to x^*
at some nonuniform rate, then

"Phase line" / "vector field"

Phase diagrams.

Def: x^* is unstable if disturbances grow in time.

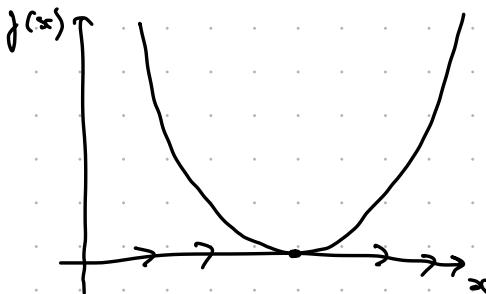
x^* is exponentially stable.

other options!

Saddle node occurs when

$$\dot{x} = f(x)$$

more complex to classify.



stable from one side & unstable from the other.

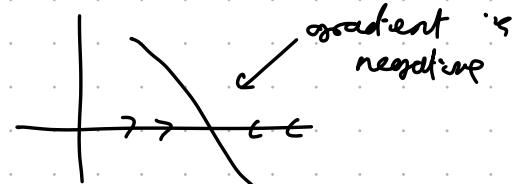
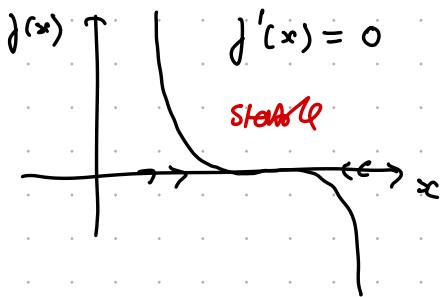
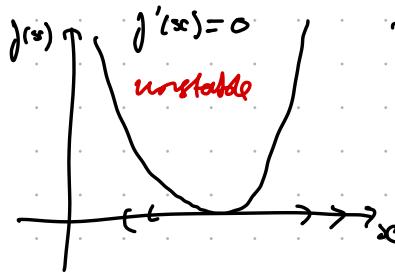
Linear stability Analysis

Look at a system, stable or not???

Thm: Take $n = 1$

① x^* is stable if $\frac{df}{dx}(x^*) < 0$

② x^* is unstable if $\frac{df}{dx}(x^*) > 0$



Just draw a picture if you have $f'(x) = 0$

Example: (Population growth)

- N is population size, ($N > 0$)
- $r > 0$, $k > 0$

$$\dot{N} = rN(1 - \frac{N}{k}) = f(N)$$

$$f(N) = 0$$

when?

when $N = 0$ or $N = k$

k is carrying capacity

- If $N > k$, then decrease
- If $N < k$, then increase

[This is the logistic equation]

$$\text{Now, want } f'(N) = r - 2r\frac{N}{k}$$

$$f'(0) = r > 0 \Rightarrow \text{unstable}$$

[no one in population so unstable & will grow]

$$f'(k) = -r < 0 \Rightarrow \text{stable}$$

[start near carrying capacity, then will stay]

Bifurcations

changes value of a parameter but something qualitatively changes.

- changes in # of fixed points.
- changes / switch in stability of fixed points.

These are different types.

① Saddle node bifurcation:

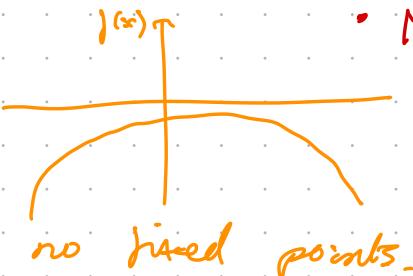
0 fixed points

1 fixed point

2 fixed points
one stable &
one unstable.

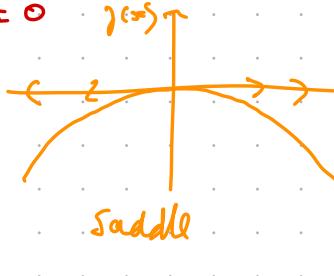
Example: $\dot{x} = \mu - x^2$. Consider different μ

• $\mu < 0$,



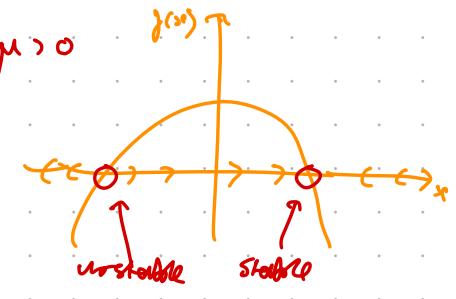
no fixed points.

• $\mu = 0$



Saddle

• $\mu > 0$

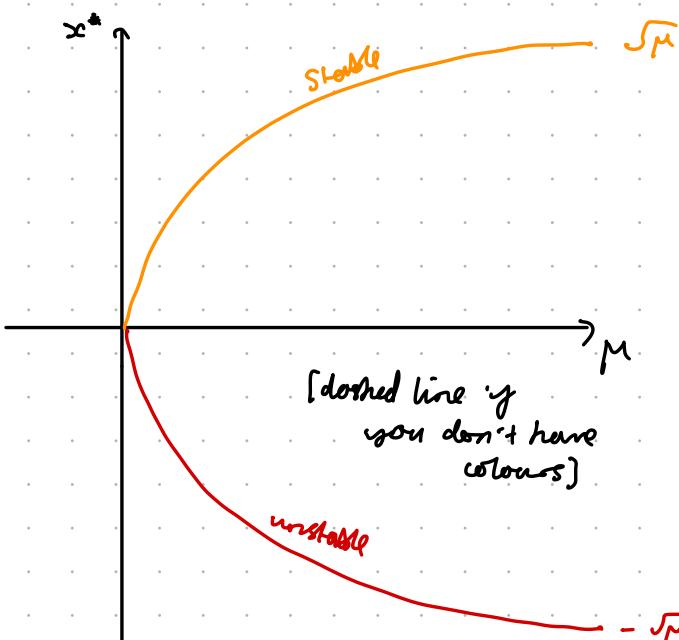


unstable stable

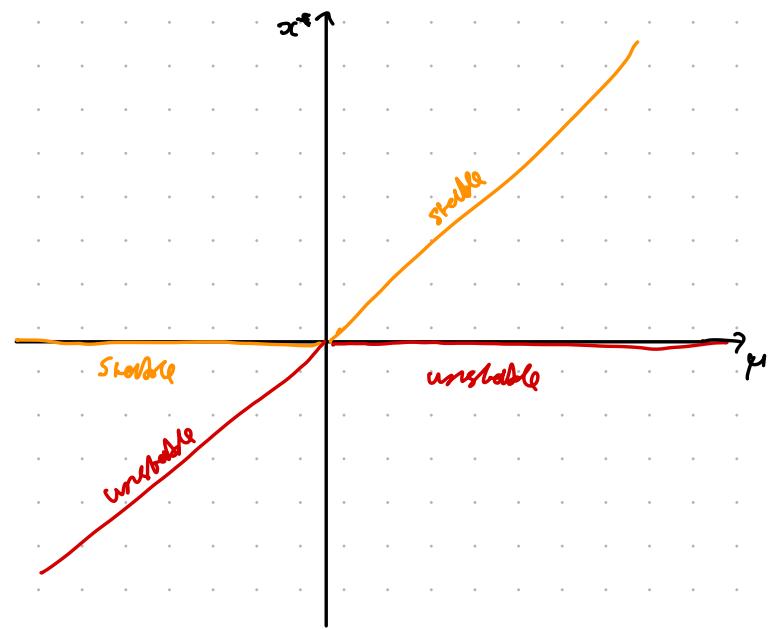
Above is messy, instead, draw a bifurcation diagram, can vary along horizontal axis, then value of fixed points on y

$$\dot{x} = \mu - x^2 = 0$$

$$\sqrt{\mu} = > 0$$



Saddle node bifurcation.



Transcritical bifurcation.

② Transcritical bifurcation

1x stable

1x unstable

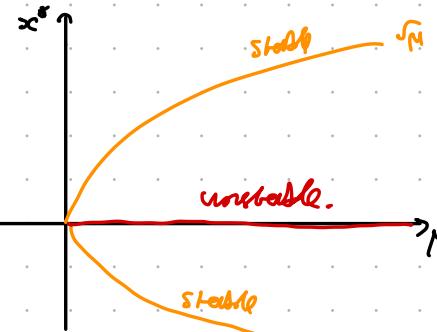
1x saddle

1x unstable

1x stable

Example: $\dot{x} = \mu x - x^2 = 0$

$x^* = 0, \mu \Rightarrow$ see picture above.



③ Pitchfork bifurcation (looks like one!)

Example: $\dot{x} = \mu x - x^3 = x(\mu - x^2)$

$x^* = 0, x^* = \pm \sqrt{\mu}$ so depending on μ , get different # fixed points.

if $\mu > 0$, it $\mu = 0$ one... stable for $\mu > 0$

Second Order Systems

$$\begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases}$$

Linear Systems

$$\begin{cases} \dot{x} = ax + by \\ \dot{y} = cx + dy \end{cases}$$

$a, b, c, d \in \mathbb{R}$

zero is always a fixed point in a linear system.

$$\dot{\underline{x}} = A \underline{x}$$

$\underline{x} \in \mathbb{R}^2$ here

$$\underline{x} = (x, y) \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

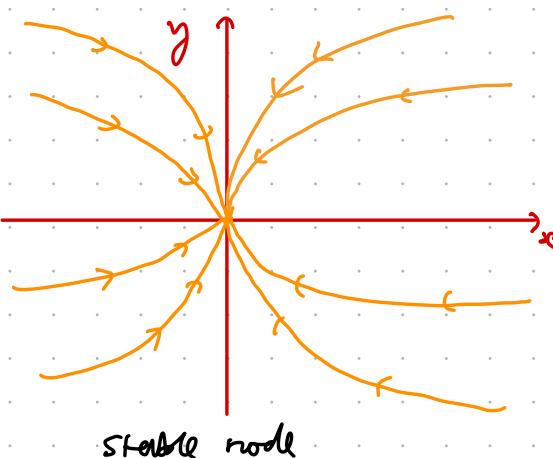
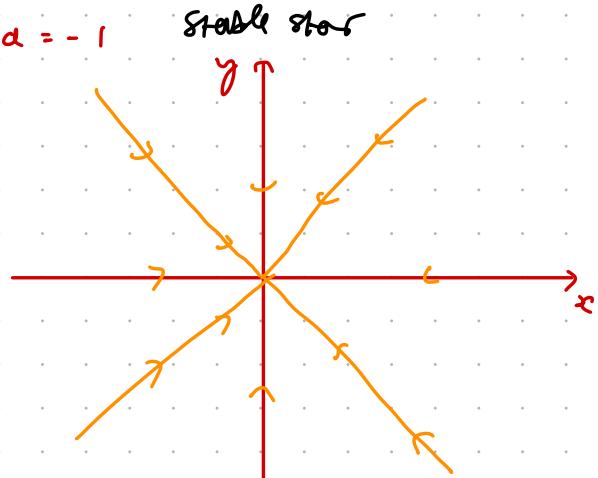
as simple as a system can be

Example: $A = \begin{pmatrix} a & 0 \\ 0 & -1 \end{pmatrix} \Rightarrow \dot{\underline{x}} = A \underline{x} \Rightarrow \begin{cases} \dot{x} = ax \\ \dot{y} = -y \end{cases}$

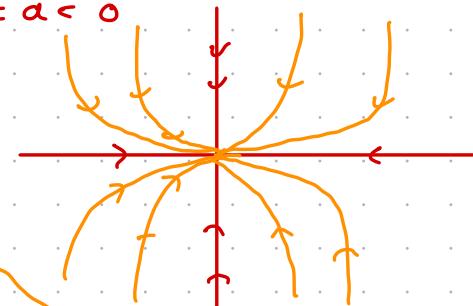
Now cases:

① $a < 0$

(i) $a < -1$ $x(t) \rightarrow 0$
quicker than $y(t) \rightarrow 0$



(ii) $a = -1$

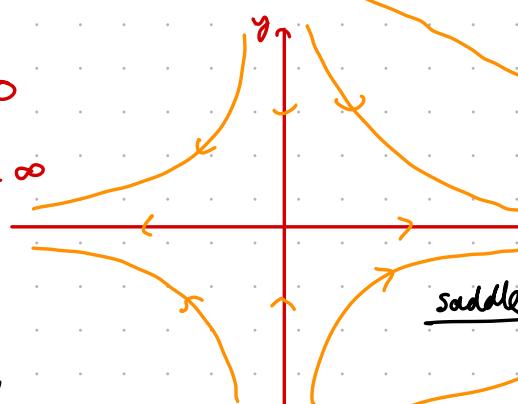


② $a > 0$

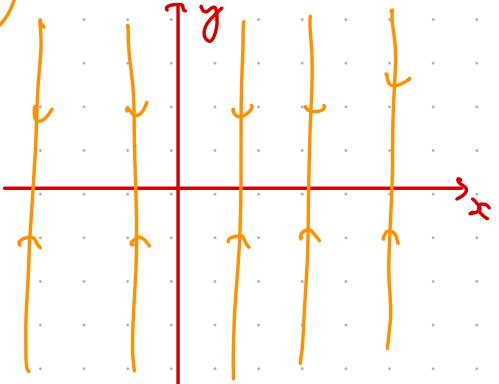
$y(t) \rightarrow 0$
 $x(t) \rightarrow \pm\infty$

stable manifold is y axis
unstable manifold is x axis

[trajectory back in time to where stable]



③ $a = 0$



WHY NICE?
Eigenvectors are just the axes so nice

General System

$$\dot{\underline{x}} = A \underline{x}, \text{ try } \underline{x} = e^{\lambda t} \underline{v}$$

can write down a general solution to this system.

$$\dot{\underline{x}} = \lambda e^{\lambda t} \underline{v} = A e^{\lambda t} \underline{v}$$

↑ eigenvalue of A .

$$\boxed{\underline{x}(t) = c_1 e^{\lambda_1 t} \underline{v}_1 + c_2 e^{\lambda_2 t} \underline{v}_2}$$

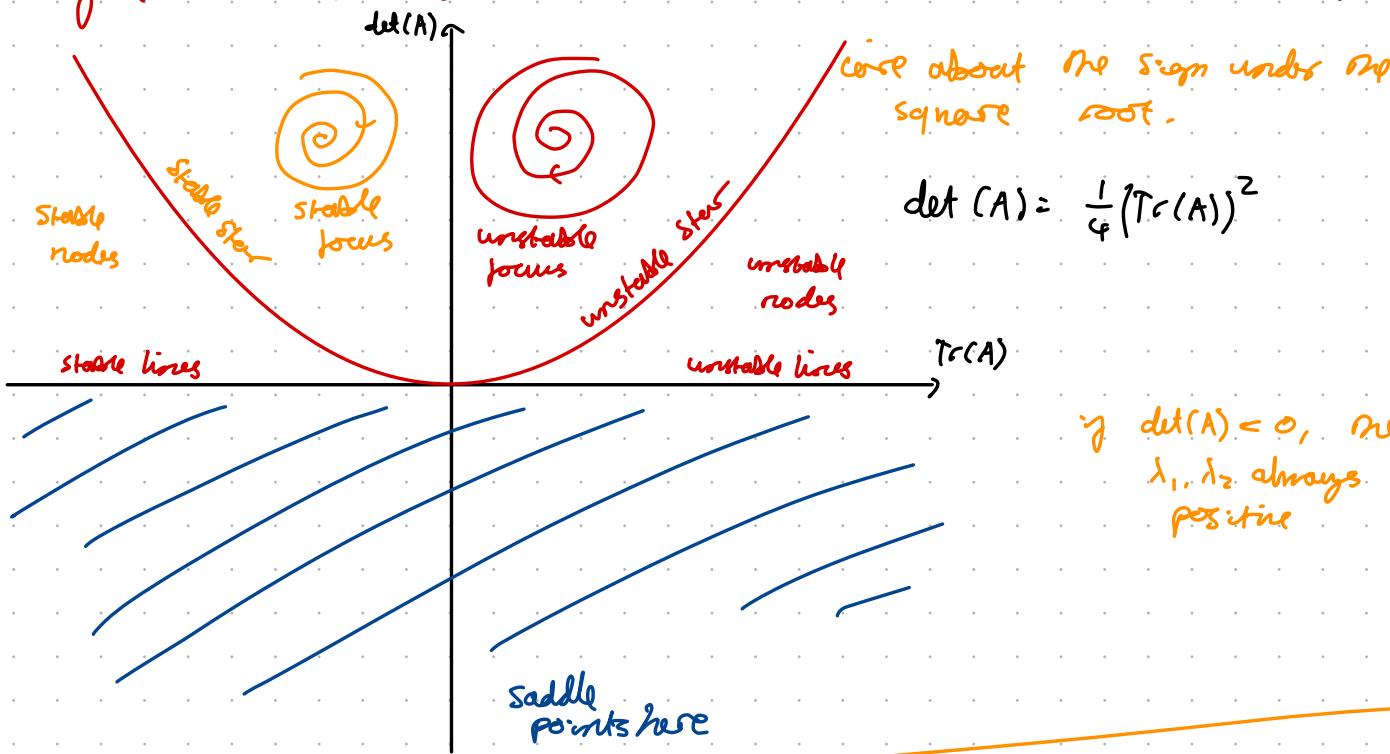
$\underline{v}_1, \underline{v}_2$ are eigenvectors of A

λ_1, λ_2 are eigenvalues.

$$\lambda_1, \lambda_2 \text{ are roots of } c_A(x) = 0 \Rightarrow \lambda^2 - \underbrace{(\text{tr}(A))\lambda}_{\text{trace } A} + \underbrace{(\det(A))}_{\det(A)} = 0$$

$$\Rightarrow \lambda_{1,2} = \frac{1}{2} \left(\text{tr}(A) + \sqrt{(\text{tr}(A))^2 - 4 \det(A)} \right)$$

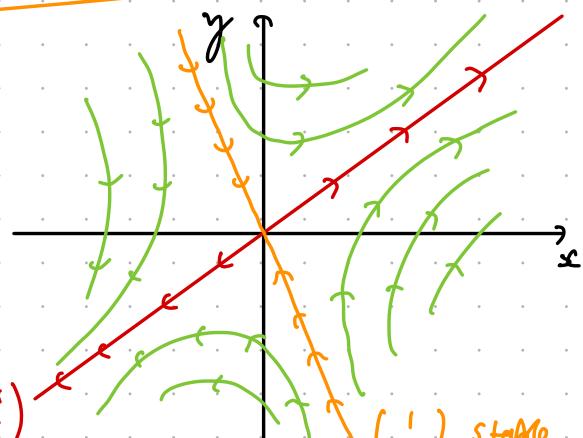
why bother with this? Easier to use tr & det \therefore can see relationships easier.



$$\det(A) = \frac{1}{4} (\text{tr}(A))^2$$

$\therefore \det(A) < 0$, then λ_1, λ_2 always positive

Example: $A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$ $\lambda_{1,2} = 2, -3$ [saddle]
 $\underline{v}_{1,2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ & } \begin{pmatrix} 1 \\ -4 \end{pmatrix}$



$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
[unstable manifold]

$\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ stable manifold

Non-Linear Systems

$$\begin{aligned}\dot{x}_1 &= f_1(x_1, x_2) \\ \dot{x}_2 &= f_2(x_1, x_2)\end{aligned}$$

or $\dot{\underline{x}} = \underline{f}(\underline{x})$

$$x(0) = x_0 \text{ so}$$

$$\phi(x_0, t)$$

↑ This is where we start & vary x_0 to get a family, again a flow

Def: A flow $\phi(x, t)$ is the solution at time t with initial value x at $t=0$.

Trajectories can't intersect or we lose uniqueness.

Def: A fixed point \underline{x}^* is

① An attracting fixed point if all trajectories that start near \underline{x}^* approach it as $t \rightarrow \infty$
 → It's orbitally attracting if \underline{x}^* attracts all trajectories.
 [no matter where you start, will always end here].

② Lyapunov stable if $\forall \varepsilon > 0 \exists \delta > 0$ s.t. $|\underline{x}(0) - \underline{x}^*| < \delta$
 Then $|\underline{x}(t) - \underline{x}^*| < \varepsilon \quad \forall t > 0$

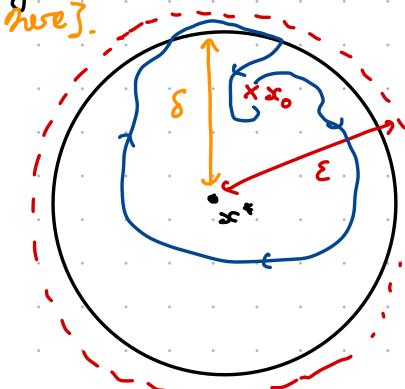
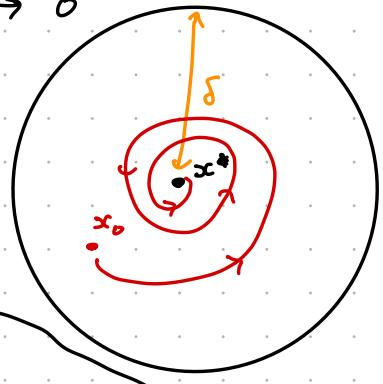
↑ where you start ↓ fixed point

Start close - Stay close stability.

③ Asymptotically stable if you're Lyapunov stable and $\exists \delta > 0$ s.t. if

$|\underline{x}(0) - \underline{x}^*| < \delta \Rightarrow |\underline{x}(t) - \underline{x}^*| \xrightarrow[t \rightarrow \infty]{} 0$
 Start within δ of fixed point. will spiral into fixed point.

won't be asked for ε - δ based proof! Context for methods & theory, not math.



Linearisation

$$\frac{dx}{dt} = ax + by = f(x, y) \quad \underline{x} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \underline{x}$$

$$\frac{dy}{dt} = cx + dy = g(x, y) \quad \text{"the Jacobian"}$$

$$\begin{pmatrix} a = \frac{\partial f}{\partial x} & b = \frac{\partial f}{\partial y} \\ c = \frac{\partial g}{\partial x} & d = \frac{\partial g}{\partial y} \end{pmatrix} \leftarrow \begin{matrix} \underline{x} \\ \underline{y} \end{matrix}$$

now take this:

$$\frac{dx}{dt} = f(x, y)$$

fixed point

$$\frac{dy}{dt} = g(x, y)$$

(x^*, y^*)

disturbance

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x - x^* \\ y - y^* \end{pmatrix}$$

Proof: Taylor expansion, in notes...

behaviour around fixed points is the same as linear systems

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = A \begin{pmatrix} u \\ v \end{pmatrix}$$

Thm: If $\dot{x} = f(x)$ has equilibrium x^* and a linearisation $\dot{x} = Ax$, then if A has no zero eigenvalues then the local stability of x^* is entirely determined by the linear system.

Population Models

(a) Predator Prey - 'Lotka Volterra'

Example: x prey y predators

$$(prey) \frac{dx}{dt} = \alpha x - \beta xy \quad (predators) \frac{dy}{dt} = -\gamma y + \delta xy$$

growth of prey unbounded. \uparrow how much predators eat \uparrow proportion of max population \uparrow $\delta > \gamma$ \uparrow no food, no prey \uparrow infinite prey means predators keep growing

$r_1 \boxed{\frac{x}{K_1}} x, y$

(b) Competing species

$$\frac{dx}{dt} = r_1 x \left(1 - \frac{x}{K_1} - \frac{\alpha_1 y}{K_1}\right) \quad \frac{dy}{dt} = r_2 y \left(1 - \frac{y}{K_2} - \frac{\alpha_2 x}{K_2}\right)$$

\uparrow limits population \uparrow competing populations \uparrow same but reflected.

E.g. rabbits & sheep: (r, s)

$$\begin{aligned} \text{not realistic, } r &= 3r \left(1 - \frac{r}{3} - \frac{2s}{3}\right) \\ \text{real numbers! } s &= 2s \left(1 - \frac{s}{2} - \frac{r}{2}\right) \end{aligned} \Rightarrow \begin{aligned} \dot{r} &= r(3-r-2s) = j \\ \dot{s} &= s(2-r-s) = g \end{aligned}$$

Fixed points: $\dot{r} = \dot{s} = 0 \Rightarrow r=0 \text{ or } s=0$

- ① check $r=0$: $\dot{s} = s(2-s) = 0 \Rightarrow s=0 \text{ or } s=2$
- ② check $s=0$: $\dot{r} = r(3-r) = 0 \Rightarrow r=0 \text{ or } r=3$
- ③ $\begin{cases} 3-r-2s=0 \\ 2-r-s=0 \end{cases} \Rightarrow$ fixed point at $(1,1)$

so fixed points are $(0,0), (0,2), (3,0), (1,1)$

want to linearise system to get ∂f

$$A = \begin{pmatrix} \frac{\partial f}{\partial r} & \frac{\partial f}{\partial s} \\ \frac{\partial g}{\partial r} & \frac{\partial g}{\partial s} \end{pmatrix} = \begin{pmatrix} 3-2r-2s & -2r \\ -s & 2-r-2s \end{pmatrix}$$

evaluate A at fixed points. Prey eigenvalues etc.

Fixed point $(0,0)$: $A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \quad \lambda_{1,2} = 3, 2 \quad v_{1,2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$\lambda_{1,2} > 0 \Rightarrow$ unstable node.

Fixed point $(0,2)$
just sheep, no rabbits $A = \begin{pmatrix} -1 & 0 \\ -2 & -2 \end{pmatrix} \quad \lambda_{1,2} = -2, -1 \quad v_{1,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \neq$

\Rightarrow stable node: both λ negative

Fixed point $(3, 0)$
just rabbits no sheep
(would stay here)

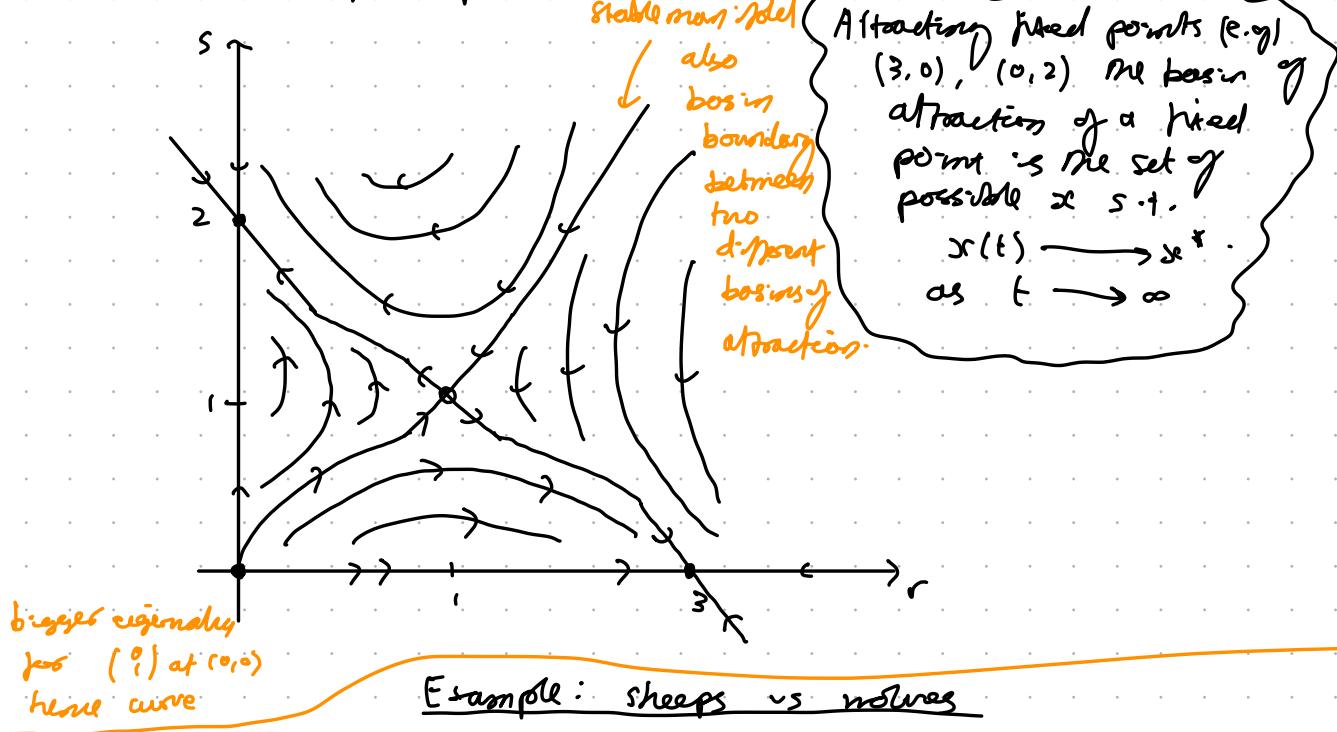
$$A = \begin{pmatrix} -3 & -6 \\ 0 & -1 \end{pmatrix} \quad \lambda_{1,2} = -3, -1 \quad v_{1,2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \end{pmatrix}$$

\Rightarrow stable node \because both λ negative

Fixed point $(1, 1)$ $A = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix} \quad \lambda_{1,2} = -\sqrt{2}-1, \sqrt{2}-1$
 $\quad < 0 > 0 \quad v_{1,2} = \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}, \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix}$

\Rightarrow saddle \because one +ve, one -ve.

Now we do our phase portrait



$$\dot{w} = w(-a + bs) \quad [\text{wolves}]$$

$$\dot{s} = s(c - dw) \quad [\text{sheep}]$$

$$\dot{w} = \dot{s} = 0 \quad \& \text{ fixed points at } (0, 0), \left(\frac{c}{d}, \frac{a}{b}\right)$$

Linearized system: jacobian matrix $A = \begin{pmatrix} -a+bs & bw \\ -ds & c-dw \end{pmatrix}$

Sub in fixed points:

$$\textcircled{1} (0, 0) \quad A = \begin{pmatrix} -a & 0 \\ 0 & c \end{pmatrix} \Rightarrow \lambda_{1,2} = -a, c, \quad v_{1,2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

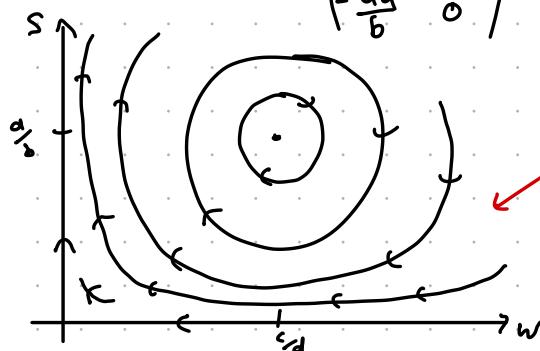
"no wolves so sheep grow exponentially"

stable for wolves, unstable for sheep.

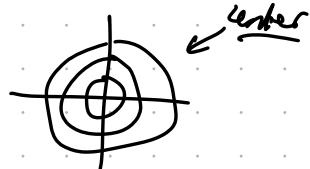
saddle

$$\textcircled{2} \left(\frac{c}{d}, \frac{a}{b}\right) \quad A = \begin{pmatrix} 0 & \frac{bc}{d} \\ -\frac{da}{b} & 0 \end{pmatrix} \Rightarrow \lambda^2 + ac = 0 \Rightarrow \lambda = \pm i\sqrt{ac}$$

so get circular orbits.



get these oscillations from this trajectory.



Discrete Time Models

1-D maps / difference equations / recursive relations

Discrete time can make more sense than continuous time. can get chaos...

$x_{n+1} = f(x_n)$, sequence x_0, x_1, x_2, \dots is 1st orbit starting from x_0 .

Def: x^* is a fixed point of $f(x^*) = x^*$

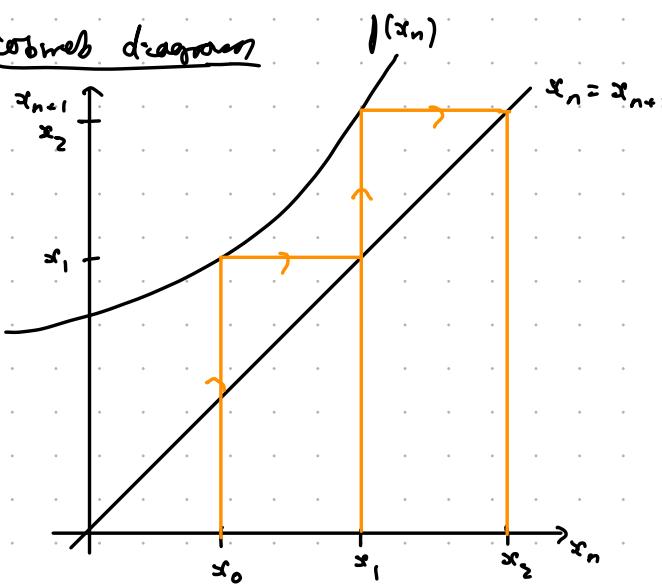
$$x_n = x^* \Rightarrow x_{n+1} = f(x_n) = x^*$$

Stability: write $\lambda = f'(x^*)$ where ' denotes $\frac{dx}{dt}$

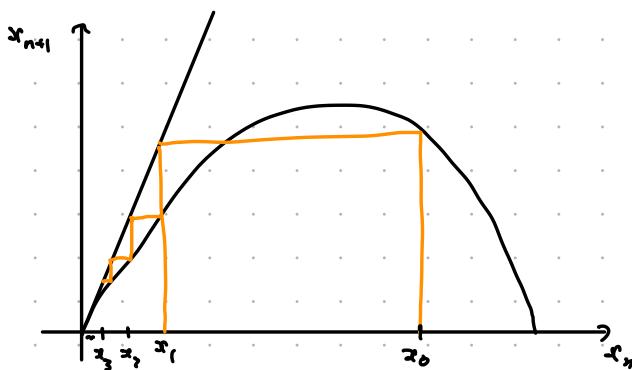
- ① If $|\lambda| < 1 \Rightarrow x^*$ is linearly stable
- ② If $|\lambda| > 1 \Rightarrow x^*$ is unstable
- ③ If $|\lambda| = 1 \Rightarrow$ marginal case - not sure...

Draw a cobweb diagram to represent this.

cobweb diagram



Example $f(x_n) = 5 \sin x_n$



Logistic Map

$$x_{n+1} = r x_n (1 - x_n)$$

normalized so x is a dimensionless measure

$x = 0$ min population

$x = 1$ max population

r is growth rate

$$f(x) = r x (1 - x) = x \leftarrow \text{fixed points}$$

$$\text{If } x=0 \text{ fixed, if } x \neq 0, r(1-x)=1 \Rightarrow x = 1 - \frac{1}{r} \leftarrow r > 0$$

$f(x) = r x (1 - x)$ is a parabola with max at

$$x_n = \frac{r}{4} \quad [\text{when } x_{n-1} = \frac{1}{2}] \Rightarrow \text{care about } 0 \leq r \leq 4 \text{ so } 0 \leq x \leq 1$$

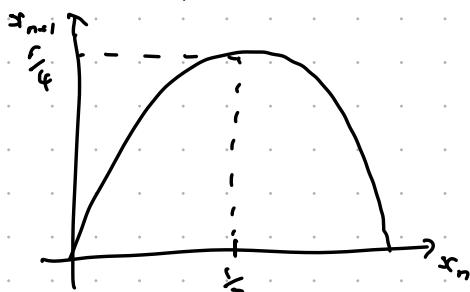
Otherwise maximum makes no sense...

Look at stability of fixed points.

If $r < 1$: $x^* = 0$ is fixed point.

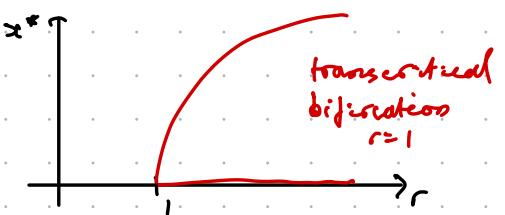
$$f'(x) = r - 2rx \quad |r| < 1$$

$$f'(0) = r < 1 \Rightarrow \text{stable}.$$



$$\text{If } 1 < r < 3: \quad x^* = 0 \quad \& \quad x^* = 1 - \frac{1}{r}$$

so $f'(0) = r > 1 \Rightarrow \text{unstable}$



$$f'(1 - \frac{1}{r}) = r - 2r + 2 = 2 - r \Rightarrow -1 < 2 - r < 1 \Rightarrow |2 - r| < 1 \Rightarrow \text{stable!}$$

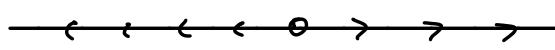
DE

$$\text{If } r > 3:$$

$x^* = 0$ unstable.

$x^* = 1 - \frac{1}{r}$ unstable

two fixed points & some type of stability.



(cycle / Periodic orbits)

$\exists n \in \mathbb{N} \text{ s.t. } f^n(x_0) = x_0 \quad \text{& return to start point.}$

" n cycle / periodic orbit of period n "

E.g. 2 cycle

$\{p, q\}$ s.t.

$$f(p) = q, f(q) = p$$

$$f^2(p) = p.$$

$$f^2(x) = r f(x)(1 - f(x)) = r^2 x(1 - x)(1 - rx(1 - x)) \quad \text{← quartic!}$$

note $f^2(x) = x \quad \text{← arranging to solve...}$

stay where you start!

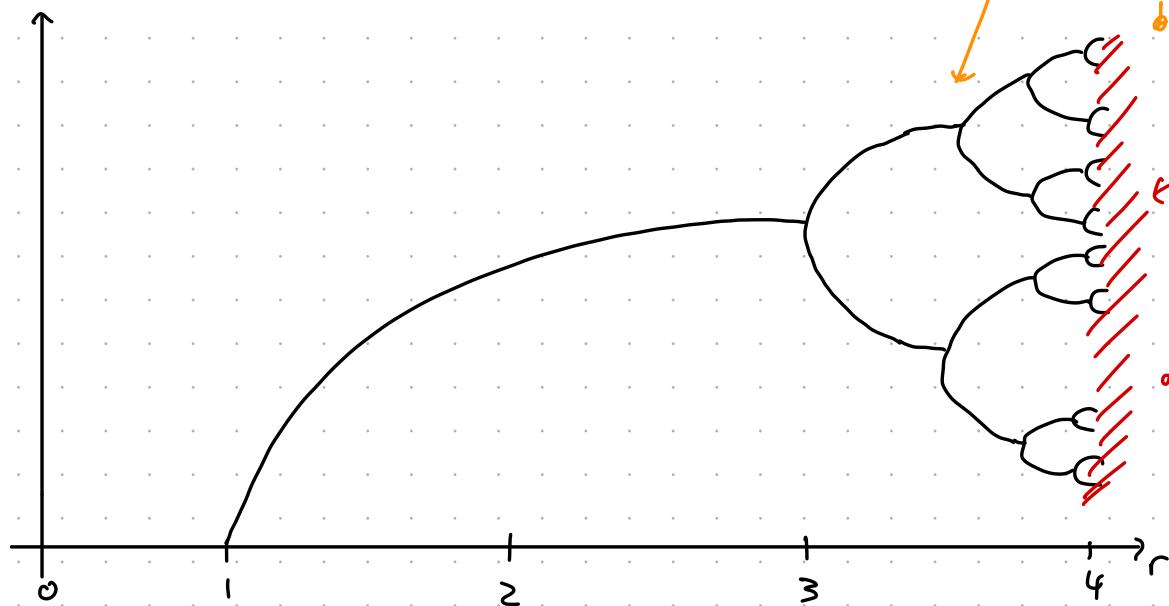
set hands & header to find values...

period 20 orbit is a line polynomial. 700 terms.

For $r > 3$, get one 2 cycle, but very close to 3.

↑
no bifurcations / period doubling bifurcations

all fixed points & points that belong in a cycle



get chaos as you approach 4
& weird stuff appearing...

Epidemiological Models

toes up between complexity & ease of solving.

S - susceptible

E - exposed. [have the disease but not symptomatic]

I - infected [and infectious]

R - recovered/removed [might have some immunity]

V - vaccinated individuals

These are the 5 main compartments might add more based on the biology of the disease

The SIR model

[basic start point]

$$\frac{dS}{dt} = -\beta S I$$

← transmission rate

become infected more susceptible people more infected people

$\frac{1}{\gamma}$ = duration of infectiousness

γ = recovery rate

$\beta, \gamma > 0$

$$\frac{dI}{dt} = \beta S I - \gamma I$$

more into infectious

proportion of the population

$$\frac{dR}{dt} = \gamma I$$

everyone belongs to this

$$S + I + R = 1$$

$$S(0) > 0, I(0) > 0, R(0) = 0$$

\uparrow
people are susceptible

\uparrow
this is a disease to start with...

For rate of growth of epidemic, look at

$$\frac{dI}{dt} = \frac{I(\beta S - \gamma)}{\geq 0}$$

for disease to be growing

transmission rate

If $S(0) > \frac{\beta}{\gamma}$ ← critical threshold
The epidemic will grow...

$$\text{If } \gamma > \beta \Rightarrow \frac{\gamma}{\beta} > 1 \Rightarrow \boxed{\frac{\beta}{\gamma} < 1}$$

$$\boxed{\frac{\beta}{\gamma} < 1}$$

need to keep this smaller than one.

$\frac{1}{\gamma}$ is duration of infectiousness

Def: The basic reproductive ratio \mathcal{R}_0 is the average number of secondary cases arising from an average primary case in an entirely susceptible population.

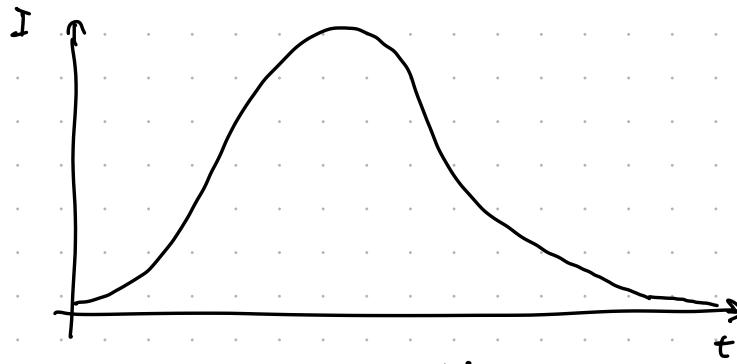
If new disease, previously unseen, then:

$$\frac{S(0) \approx 1}{}$$

$-\mathcal{R}_0 > 1$: pathogen can invade

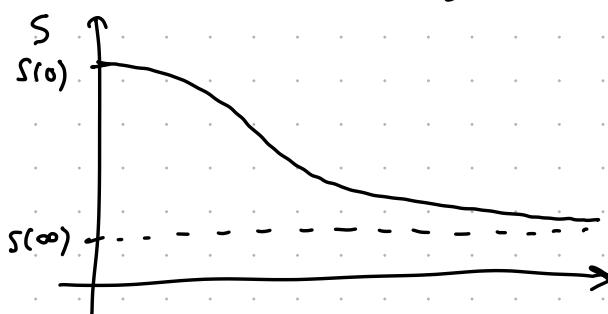
$-\mathcal{R}_0 < 1$: pathogen will die out.

In the real world, epidemics look like this.



$$\text{so } S(t) = S(0)e^{-R_0 R(t)}$$

$\rightarrow S(t)$ decreasing since $R(t)$ increasing



final epidemic size, final number of people infected...

$S(\infty) = \lim_{t \rightarrow \infty} S(t)$, so always some susceptible individuals, must stop at some point.

$$I(\infty) = 0$$

$$S + I + R = 1 \Rightarrow S(\infty) + I(\infty) + R(\infty) = 1$$

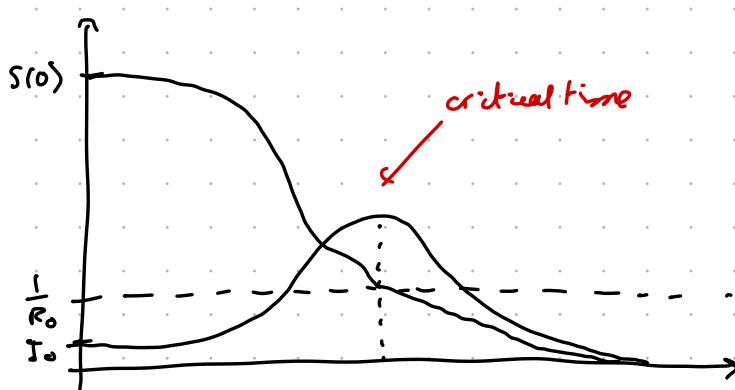
$$\text{so } 1 - R(\infty) = S(\infty)$$

$$1 - R(\infty) - S(0)e^{-R_0 R(\infty)} = 0$$

why do we get epidemic burnout?

Assume $R_0 > 1$ [do get an epidemic], so $\frac{1}{R_0} < 1$

Then $\frac{dI}{dt} > 0 \text{ if } S(0) > \frac{1}{R_0}$



Missing that recovered people can become susceptible again/ add births & deaths into the mix.

only fixed point is at 0 infected. No other fixed points.

SIR with demography

$$\frac{dS}{dt} = -\beta SI - \mu S + M \leftarrow \text{death rate} \quad \frac{1}{\mu} \text{ is average lifespan}$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

$\frac{1}{\mu}$ is average lifespan

$\leftarrow \text{birth rate} \times \frac{\text{total population}}{\text{S} + \text{I} + \text{R} = 1}$

Births & deaths balance to give constant population

When going?

$$\frac{dI}{dt} = I(\beta S - \gamma - \mu) < 0 \quad \text{if } S < \frac{\mu + \gamma}{\beta}$$

so $R_0 = \frac{\beta}{\mu + \gamma}$ is our threshold for epidemic growth.

Fixed points

$$I=0 \quad \text{or} \quad S = \frac{\mu + \gamma}{\beta} = \frac{1}{R_0}$$

① $I^* = 0$: $-\mu S + \mu = 0 \Rightarrow S^* = 1$
Fixed point at $(1, 0, 0)$

[no infectious people, recovered eventually die off, so only susceptibles left]

② $S^* = \frac{1}{R_0}$: $\mu - \beta \left(\frac{\mu + \gamma}{\beta} \right) S - \mu \left(\frac{\mu + \gamma}{\beta} \right) = 0$

so $I^* = \frac{\mu}{\beta} (R_0 - 1) \quad R^* = 1 - S^* - I^*$

Fixed point at $\left(\frac{1}{R_0}, \frac{\mu}{\beta} (R_0 - 1), 1 - \frac{1}{R_0} - \frac{\mu}{\beta} (R_0 - 1) \right)$ ← endemic equilibrium.

Find jacobian, $\frac{dS}{dt} = f(S, I, R)$, $\frac{dI}{dt} = g(S, I, R)$, $\frac{dR}{dt} = h(S, I, R)$

$$A = \begin{pmatrix} \frac{\partial f}{\partial S} & \frac{\partial f}{\partial I} & \frac{\partial f}{\partial R} \\ \frac{\partial g}{\partial S} & \frac{\partial g}{\partial I} & \frac{\partial g}{\partial R} \\ \frac{\partial h}{\partial S} & \frac{\partial h}{\partial I} & \frac{\partial h}{\partial R} \end{pmatrix} = \begin{pmatrix} -\beta I - \mu & -\beta S & 0 \\ \beta I & \beta S - \mu - \gamma & 0 \\ 0 & \gamma & -\mu \end{pmatrix} \quad \begin{matrix} \text{jacobian} \\ \text{at fixed point} \\ \text{working out} \end{matrix}$$

Now, calculate eigenvalues..

Disease free equilibrium:

$$A = \begin{pmatrix} \mu & \beta & 0 \\ 0 & \beta - \mu - \gamma & 0 \\ 0 & \gamma & \mu \end{pmatrix}$$

$$\begin{aligned} \lambda_1 &= -\mu < 0 \\ \lambda_2 &= 0 \\ \lambda_3 &= \beta - (\mu + \gamma) \end{aligned}$$

Stable if $\lambda_3 < 0$, so $\beta < \mu + \gamma$, $\frac{\beta}{\mu + \gamma} = R_0 < 1$

Endemic equilibrium:

Require $R_0 > 1$, otherwise this won't exist.

Calculate determinant of $A - \lambda I$ before subbing in S & I

$$\det(A - \lambda I_3) = (-\mu - \lambda)(1 - \beta I - \mu - \lambda)(\beta S - (\mu + \gamma) - \lambda) + \beta I \quad \dots$$

$$\lambda_1 = -\mu$$

But, as

$S + I + R = 1$,
com reduce 3
equations to
one,

note: $R(0) \neq R_0$

but dumb!

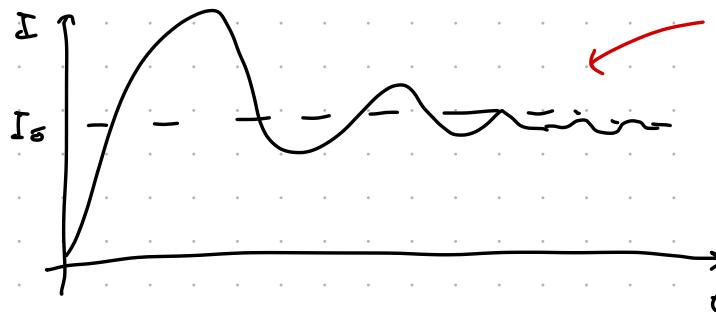
$$\lambda_{2,3} = -\frac{\mu R}{2} \pm \frac{1}{2} \sqrt{(\mu R)^2 - 4(\mu + \gamma)\mu(R_0 - 1)}$$

stable if $\lambda_{1,2,3} < 0$ [all less than zero]

① if $(\mu R)^2 < 4(\mu + \gamma)\mu(R_0 - 1)$ then get imaginary

$$\therefore \lambda_{2,3} = p \pm iq \quad \text{where } p = -\frac{\mu R_0}{2} < 0$$

\Rightarrow stable, real part negative with oscillations.

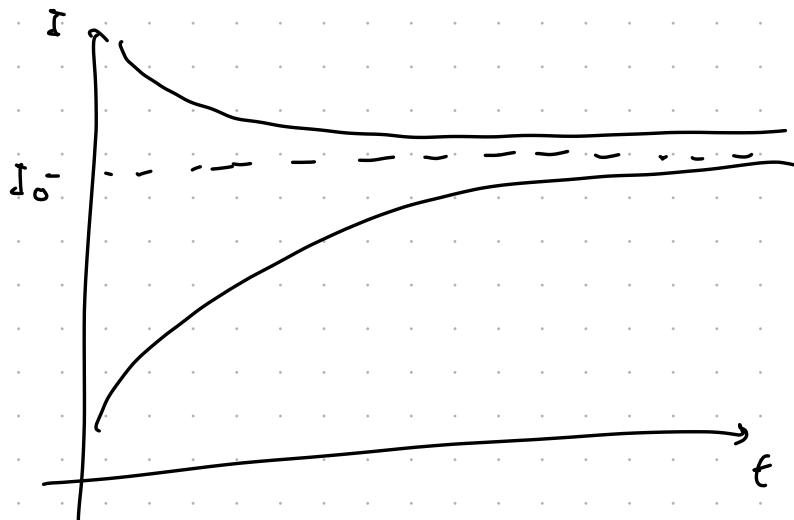


different cases for values of eigenvalues.

② if $(\mu R)^2 > 4(\mu + \gamma)\mu(R_0 - 1) > 0$

$$\Rightarrow \frac{1}{2} \sqrt{(\mu R)^2 - 4(\mu + \gamma)\mu(R_0 - 1)} < \frac{1}{2} \mu R$$

so $\lambda_2, \lambda_3 < 0$, so stable, but no oscillations.



Average age for someone getting infected [mean]

Assume death rate $\mu \ll \beta$ [transmissions $\frac{1}{\mu} = 65 \times 365$]

Force of infection = βI $\mu = \frac{1}{65 \text{ years}} \quad \text{life span} \approx 1 \text{ year}$

Average time spent in S = $\frac{1}{\beta I}$

At endemic equilibrium, $I^* = \frac{\mu}{\beta} (R_0 - 1)$

$\alpha = \frac{1}{\beta I^*} = \frac{1}{\mu(R_0 - 1)}$ [mean age of infection]

SIS - model

No period of recovery. If you had a cold, can get it again

⇒ only two compartments

$$\frac{dS}{dt} = -\beta SI + \gamma I \quad \left. \quad \frac{dI}{dt} = \beta SI - \gamma I \right. \quad \frac{dS}{dt} = -\frac{dI}{dt} \quad S + I = 1$$

$$\Rightarrow \frac{dI}{dt} = \beta I \left(1 - I - \frac{1}{R_0} \right) = g(I) \quad \text{← look at fixed points...}$$

Stability: If $I^* = 0$, or $I^* = 1 - \frac{1}{R_0}$... fixed points at $(1, 0)$ and $(\frac{1}{R_0}, 1 - \frac{1}{R_0})$

① $I^* = 0$,

$$g'(I) = \beta \left(1 - \frac{1}{R_0} \right) - 2\beta I$$

$$g'(0) = \beta \left(1 - \frac{1}{R_0} \right) > 0 \quad \text{if } R_0 > 1 \quad [\text{unstable}]$$

② Endemic equilibrium $\Leftrightarrow 0 \quad \text{if } R_0 < 1 \quad [\text{stable}]$

$$g'\left(1 - \frac{1}{R_0}\right) = -\beta \left(1 - \frac{1}{R_0}\right) < 0 \Rightarrow \text{stable}$$

SEIR model

Exrod: $\frac{1}{\sigma}$ = time taken to become infectious [incubation period]

$$\frac{dS}{dt} = \mu - \beta SI - \mu S \quad S + E + I + R = 1$$

$$\frac{dE}{dt} = \beta SI - \sigma E - \mu E$$

↑
people
become
infectious ↑
people
can die
before passing
on disease

$$\frac{dI}{dt} = \sigma E - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

How to find R_0 : can calculate, or from definitions.

$$R_0 = \beta \times \left(\frac{\text{time spent infectious}}{\mu + \gamma} \right) \times \left(\frac{\text{proportion that make it to being infectious}}{\frac{\sigma}{\mu + \sigma}} \right)$$

↑
transmission
rate ↑
 $\frac{1}{\mu + \gamma}$ ↑
 $\frac{\sigma}{\mu + \sigma}$

$$R_0 = \frac{\beta \sigma}{(\mu + \gamma)(\mu + \sigma)}$$



can become infectious & then die

Disease Free Equilibrium: $(1, 0, 0, 0)$

Infection Equilibrium: $\frac{(\mu + \gamma)(\mu + \sigma)}{\beta \sigma} = S^* = \frac{1}{R_0}$

$$\left(\frac{1}{R_0}, \frac{M(\mu + \gamma)}{\beta \sigma} (R_0 - 1), \frac{M}{\beta} (R_0 - 1), 1 - S^* - I^* - E^* \right)$$

Will not exist for 4×4 ^{vector} in our system!

$$A = \begin{pmatrix} -\beta I - M & 0 & -\beta S & 0 \\ \beta I & -(\mu + \sigma) & \beta S & 0 \\ 0 & 0 & -\mu - \gamma & 0 \\ 0 & 0 & \gamma & -M \end{pmatrix} \quad \leftarrow \text{jacobian}$$

Algebraic ...

Eigenvalues: $\lambda_1 = -\mu < 0$,

$$\lambda_2 \approx -(\sigma + \gamma) < 0$$

$$\operatorname{Re}(\lambda_{3,4}) < 0 \quad \text{if } R_0 < 1$$

Stable if $R_0 < 1$

Right structure

high risk & low risk

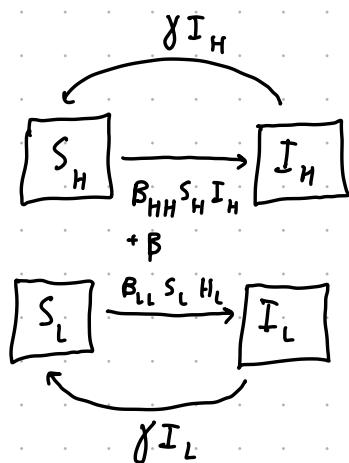
only two types

$n_H + n_L = 1$, transmission rate β_{xy} = transmission rate from y to x

doing the infection

Split into 4 compartments

High risk stay high risk & small w/ low



$$\frac{dS_H}{dt} = -\beta_{HH} S_H I_H - \beta_{HL} S_H I_L + \gamma I_H$$

$$\frac{dI_H}{dt} = \beta_{HH} S_H I_H + \beta_{KL} S_H I_L - \gamma I_H$$

$$\frac{dS_L}{dt} = \dots$$

$$\frac{dI_L}{dt} = \dots$$

$$\text{so } S_H + I_H = n_H \quad \text{and} \quad S_L + I_L = n_L$$

who acquires infection from whom most? [WAI FW matrix]

$$\begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{LH} & \beta_{LL} \end{pmatrix} \quad \leftarrow \begin{array}{l} \text{infection of } H \\ \text{infection of } L \end{array}$$

can generally assume that $\beta_{HL} = \beta_{LH}$

Also $\beta_{HH} > \beta_{LL} > \beta_{KL}$

symmetric interactions...

Example $\begin{pmatrix} 10 & 0.1 \\ 0.1 & 5 \end{pmatrix}$ very little transmission between high resp & low resp

$$n_H = 0.2, n_L = 0.8, \gamma = 1$$

high resp is 20%

low resp is 80% of populations

$$R_0^H = \frac{\beta_{HH} n_H + \beta_{HL} n_L}{\gamma} = 2.08 > 1$$

infection takes off

$$R_0^L = \frac{\beta_{LL} n_L + \beta_{LH} n_H}{\gamma} = 0.82 < 1$$

infection dies off

Disease free equilibrium

$$S_L = n_L, S_H = n_H$$

$$\dot{J}(I_H, I_L) = \frac{dI_H}{dt} = (\beta_{HH} n_H - \gamma) I_H + \beta_{HL} n_H I_L$$

$$\dot{J}(I_H, I_L) = \frac{dI_L}{dt} = (\beta_{LL} n_L - \gamma) I_L + \beta_{LH} n_L I_H$$

2x2 system of O-Deoerential Equations...

Jacobian $A = \begin{pmatrix} \beta_{HH} n_H - \gamma & \beta_{HL} n_H \\ \beta_{LH} n_L & \beta_{LL} n_L - \gamma \end{pmatrix} = \begin{pmatrix} 1 & 0.02 \\ 0.08 & -0.2 \end{pmatrix}$

Find eigenvalues. $\lambda_1 = -0.2013, \lambda_2 = 1.0013$

$$e^{\lambda_1 t} + e^{\lambda_2 t}$$

for $t \approx 0$,
longer term
will dominate
at the start...

$\lambda_2 > 0$ dominant eigenvalue \Rightarrow disease is going to invade.

R_0 didn't tell us what was going to happen... This does!

Assuming we know this categories. could have rate dependency on age. You then get integral terms etc...

Vaccination

Aim: reduce # susceptibles (proportion), below the critical threshold.
so that $S < \frac{1}{R_0}$ \leftarrow found last time...

Assume: $S(0) + p = 1$ where p is the proportion vaccinated.

$$\text{so want } S - p < \frac{1}{R_0} \Rightarrow p > 1 - \frac{1}{R_0}$$

If $R_0 \geq 1$, need 50% vaccinated to ensure disease can't invade.

Example (Pediatric vaccination)

so vaccinate people at birth & see...

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$$

birth rate proportion not vaccinated

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \mu p + \gamma I - \mu R$$

those born & born vaccinated are immediately recovered

Change of variables

$$S = S'(1-p)$$

$$I = I'(1-p)$$

$$R = R'(1-p) + p$$

We change the variables to explore the system, setting $S = S'(1-p)$, $I = I'(1-p)$, $R = R'(1-p) + p$. Therefore:

$$(1-p) \frac{dS'}{dt} = \mu(1-p) - (\beta I'(1-p) + \mu)S'(1-p)$$

$$(1-p) \frac{dI'}{dt} = \beta S' I'(1-p)^2 - (\gamma + \mu)I'(1-p)$$

$$(1-p) \frac{dR'}{dt} = \gamma I'(1-p) + \mu p - \mu R'(1-p) - \mu p$$

which reduces to

[SIR model with
 $\beta' = \beta(1-p)$]

nice

$$\begin{aligned} \frac{dS'}{dt} &= \mu - (\beta(1-p)I' + \mu)S' \\ \frac{dI'}{dt} &= \beta(1-p)S'I' - (\gamma + \mu)I' \\ \frac{dR'}{dt} &= \gamma I' - \mu R' \end{aligned}$$

$$\text{Require } R_0 < 1 \Rightarrow (1-p)R_0 < 1 \Rightarrow p > 1 - \frac{1}{R_0} = p_c$$

measles needs 97%
 vaccinated so depends
 on public behaviour...

critical number of
 vaccinations so that
 disease doesn't break
 out...

Isolations [Q for quarantine]

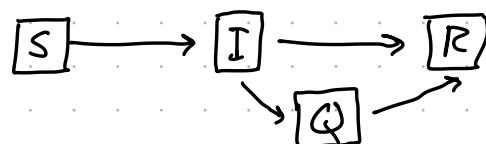
Assume: detection rate of

$$\text{time spent in } Q = \frac{1}{\tau}$$

for whole demography... births - infections - deaths.

$$\frac{dS}{dt} = \mu - \beta IS - \mu S$$

$$\frac{dI}{dt} = \beta IS - dI - \gamma I - \mu I$$



$$\frac{dQ}{dt} = dI - \tau Q (-\mu Q)$$

$$\frac{dR}{dt} = \gamma I + \tau Q - \mu R$$

no deaths in
 quarantine

$$R_0 = \frac{\beta}{d + \gamma + \mu} = 1 \Rightarrow d = \beta - \mu - \gamma$$

← critical rate
to increase
infection doesn't
take off...

Setting all $\frac{d}{dt} = 0$, Equilibrium at

$$I^* = 0 \quad \text{or} \quad S^* = \frac{1}{R_0} = \frac{d + \gamma + \mu}{\beta}$$

Disease free: $(1, 0, 0, 0)$

Epidemic eq: $\left(\frac{1}{R_0}, \frac{\mu}{\beta} (R_0 - 1), \frac{d \mu}{\tau \beta} (R_0 - 1), \frac{R_0 - 1}{\beta} (\gamma + d) \right)$ if $R_0 > 1$

\uparrow survivors \uparrow quarantine

Big assumption: no limitation on ability to quarantine people.

What if we had that $Q = Q_c$ some upper bound on quarantine.

$\{dI \geq \tilde{\tau} Q_c\}$
 $\frac{dS}{dt}$ stays same.

$$\frac{dI}{dt} = \beta S I - (\gamma + \mu) I - \tilde{\tau} Q_c$$

$$\frac{dQ}{dt} = \tau Q_c - \tilde{\tau} Q_c = 0 \quad \text{so } Q = Q_c \text{ constant!}$$

so $\frac{dR}{dt} = \tilde{\tau} Q_c + \gamma I - \mu R$

At threshold, jumps to a different model
so got weird discontinuities

$$R_0^c = \frac{\beta}{\gamma + \frac{\tilde{\tau} Q_c}{I^*} + \mu} > R_0$$

← before we hit critical threshold

1 $Q < Q_c$ and $R_0 > 1$, we get ① a stable endemic equilibrium
② unstable disease free equilibrium.

2 $Q = Q_c$ $\Rightarrow R_0^c > R_0 > 1$, set all equal to zero, get quadratic
in $I = 0$, get one low equilibrium
& one branches

① I_{low}^*

② I_{high}^*

This means

Discrete Time Models

$S + I + R = N$ \leftarrow population size. Assume no demography (no births & deaths)

Assume a timestep $n = \Delta t$

At each timestep two possible events

① $S \rightarrow S-1, I \rightarrow I+1$ [infection]

② $I \rightarrow I-1, R \rightarrow R+1$ [recovery]

Write down difference equations

Euler's method: if $\frac{dx}{dt} = f(x)$, then $x_{n+1} = x_n + f(x) \Delta t$

apply
↓

$$g(S_n, I_n, R_n) = S_{n+1} = S_n - \frac{\beta S_n I_n}{N} \Delta t + \mu \Delta t N - \mu \Delta t S_n$$

$$g(S_n, I_n, R_n) = I_{n+1} = I_n + \frac{\beta S_n I_n}{N} \Delta t - (\gamma + \mu) \Delta t I_n$$

$$h(S_n, I_n, R_n) = R_{n+1} = R_n + \gamma \Delta t I_n - \mu \Delta t R_n$$

Susceptibles at timestep $n+1 \rightarrow$

Fixed points: $S_{n+1} = S_n, I_{n+1} = I_n, R_{n+1} = R_n$

Disease free Equilibrium: $S_n^* = N, I_n^*, R_n^* = 0$

Endemic Equilibrium: $S_n^* = \frac{N}{R_0}, I_n^* = \frac{\mu N}{\beta} (R_0 - 1), R_n^* = \frac{\gamma N}{\beta} (R_0 - 1)$

Now want to consider stability. So construct a master equation.

$P_I(t)$ = probability of I infectious individuals at time t

$\{P_I(t)\}_{I=0}^N$ ← this is our distribution...

Example SIS model w/ no demography (no births/deaths)

Two events:

① $S \rightarrow S-1, I \rightarrow I+1$

infection

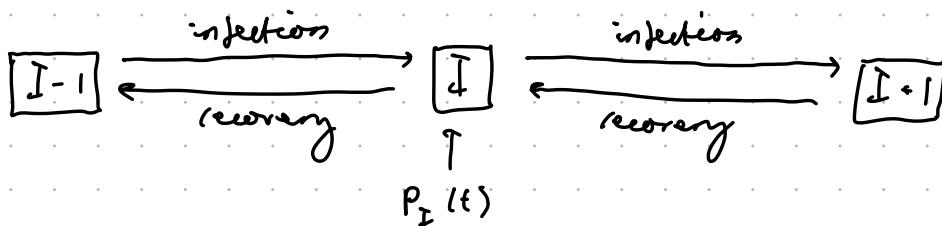
rate: $\frac{\beta S I}{N}$

② $S \rightarrow S+1, I \rightarrow I-1$

recovery

rate: γI

4 events/interactions that impact probability that I ppl infections



- ① Situation w/ I infected, has recovery at rate γI additional susceptibility
- ② Situation w/ $I-1$ ppl infected, has infections at rate $\frac{B(S+1)(I-1)}{N}$
- ③ Situation w/ I ppl infected, has a new infection = $\frac{BSI}{N} = \frac{B(N-1)I}{N}$
- ④ Situation w/ $I+1$ ppl infected, has recovery at rate $\gamma(I+1)$

Master equations: P_I [rate of event A] = prob of being in state I and event A occurs.

$$\begin{aligned} \frac{dP_I}{dt} = & -P_I[\gamma I] - P_I\left[\frac{B(N-1)I}{N}\right] \\ & + P_{I-1}\left[\frac{B(N-I+1)(I-1)}{N}\right] + P_{I+1}[\gamma(I+1)] \end{aligned}$$

We want the distribution of all possible scenarios & their probability

$$\frac{dP_I}{dt} = 0$$

Balance occurs when recovery from $I+1$ balances infections from I

$$P_{I-1}^*[\gamma(I+1)] = P_I^*\left[\frac{B(N-I)I}{N}\right] \quad \text{I to } I-1$$

Reasoning

$$P_{I-1}^* = P_I^* \frac{B(N-I)I}{N\gamma(I+1)} = P_{I-1}^* \left(\frac{B(N-I)I}{N\gamma(I+1)} \right) \left(\frac{B(N-I+1)(I-1)}{N\gamma I} \right)$$

keep going & iterating

$$P_{I+1}^* = P_I^* \prod_{j=1}^I \left(\frac{B(N-j)j}{N\gamma(j+1)} \right)$$

so can work out equilibrium distribution $\{P_i\}_{i=1}^N$ if we know P_I^*

Simplify:

$$P_I^* = P_I \frac{(N-1)!}{(N-I)! I} \left(\frac{\beta}{\gamma N}\right)^{I-1}$$

Need P_I .

Extinction rate: only happens when $I=1 \rightarrow F=0$

rate = γP_I ← probability only one infectious individual

$$\sum_{I=1}^N P_I = P_I \sum_{I=1}^N \frac{(N-1)!}{(N-I)! I} \left(\frac{\beta}{\gamma N}\right)^{I-1} = 1 \quad \text{← } R_0$$

Rearrange:

$$P_I = \left(\sum_{I=1}^N \frac{(N-1)!}{(N-I)! I} R_0^{I-1} \right)^{-1}$$

can now calculate

P_I so know

the entire distribution
of all possible outcomes.

Extinction rate = γP_I

is rate of extinction for
SIS model without
demography

master equation method is a
powerful way to get any
possible distribution.

Better than DEs ∵ you can say exactly when does each extinction.

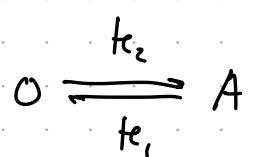
Before, dies out at infinity. Now can say when it ends exactly.

Chapter 3 - Modelling molecular networks

We now consider within-host biological models. Now into the micro scale. Chemical reactions converting one molecule into another.

Simple example

Assume a molecule A is produced & degraded at a constant rate such that



k_1 = production rate

k_2 = degradation rate

Production of A assumed constant over time.

$$\frac{d[A]}{dt} = k_1 - k_2 [A]$$

$[A]$ = concentration of molecule A

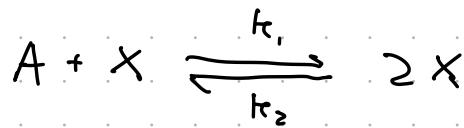
Fixed points occur when $\frac{d[A]}{dt} = 0$. Assume $k_1, k_2 > 0$

so equilibrium when $[A] = \frac{k_1}{k_2}$

so $\frac{d[A]}{dt} > 0$ when $[A] < \frac{k_1}{k_2}$] fixed point is globally stable...
 $\frac{d[A]}{dt} < 0$ when $[A] > \frac{k_1}{k_2}$

Section 3.1 - Autocatalysis

System w/ a molecule X which induces its own production with the addition of a molecule A.



Use law of mass action: States that the rate of a reaction is proportional to

Assume d surplus on A \Rightarrow A's concentration is constant.

This gives us

$$\begin{aligned} \frac{d[X]}{dt} &= k_1 [A][X] - k_2 [X][X] \\ &= [X](k_1 - k_2 [X]) \quad \text{for } k_1 = k_1 [A] \end{aligned}$$

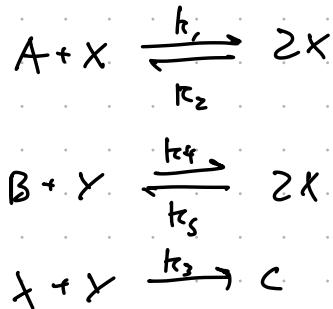
Fixed points occur when $\frac{dx}{dt} = 0 \Rightarrow [x] = 0 \text{ or } [x] = \frac{k}{k_2}$

Differentiate: $\frac{\partial f}{\partial [x]} = k_1 - 2k_2 [x]$

When $[x] = 0 \Rightarrow \frac{\partial f}{\partial [x]} > 0 \Rightarrow \text{unstable}$

...

Example: Two molecules X & Y form a complex. Induce their own production in presence of A, B . The system can be described as



$$f([x], [y]) = \frac{dx}{dt} = k_1 [A][X] - k_2 [A][X] - k_3 [X][Y]$$

$$\begin{array}{l} \text{by } \downarrow \text{small} \\ k_1 = k_1 [X] \end{array} = [x] [k_1 - k_2 [x] - k_3 [x]]$$

$$\text{Similarly: } g([x], [y]) = \frac{dy}{dt} = [y] (k_2 - k_5 [y] - k_3 [x])$$

Equilibrium when $\frac{dx}{dt} = \frac{dy}{dt} = 0$

Then find fixed points... (see rates [too tired...])

To find stability, compute the jacobian J

$$J = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{pmatrix} =$$

Eigenvalues at $(0, 0)$

Stable / unstable directions

law of mass action: rate of chemical reaction.

Rate $r_{12} =$

Example

Species A & B, form a complex C.

