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@ 1. Read Section 2.8 in the lecture notes on mass conservation. In incompressible 3D flow, a pure straining
motion is generated by the velocity field
(a) What are the components of the rate of strain tensor e;;?
(b) What constraint does incompressibility place on «, § and ~7
(c) What is the vorticity of this flow?
(d) Draw the streamlines of a two-dimensional incompressible flow (y = 0) for o > 0.
(e) Explain how you would expect this two-dimensional incompressible flow to deform an infinitesimal
square fluid element located at the origin.
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@ 2. Consider the motion of an infinitesimal rectangular fluid element of size dz by Jy (see Figure 1) in a
two-dimensional flow u = (u(z,y,t),v(x,y,t),0). For simplicity, we will remove translation of the fluid
element by considering flow relative to point A.

Figure 1: The velocity components relative to a point A in a material element M (t) at a time ¢.

(a) Show that the extensional rate of strain %ﬂ due to increases in the legth of the side AC' is given
by €99.

(b) Show that the shear components of the rate of strain act to drive the element from its rectangular
shape by showing that the angle § at CAB (see Figure 2) evolves according to

00

ot
Hint: consider the vertical motion of the point B in Figure 2, which will increase the angle 6.,
and then the horizontal motion of the point C' for da.
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(b)

Figure 2: Influence of shear strain on the material element at a time ¢ 4+ §t, showing the deformation of an

element from Figure 1 after time §t.
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B . (Adapted from Acheson p. 5) Consider a fluid in uniform rotation with angular velocity 2 so that in

Cartesian coordinates the velocity is given by

u=—Qy, v=QQx, w=0.

(a) Find the particle paths.
(b) Find the streamlines. Do they agree with the particle paths? Why?

(c) Calculate the acceleration a; and interpret the result.
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@ 1. Consider the conservation law for a dissolved species, like salt in water or carbon dioxide in air. For
now, we will assume that there are no chemical reactions in the fluid to generate the species.
(a) Identify the quantities needed to track the concentration of such a species in the presence of a
flow. What form does the surface rate-of-exchange term take?

(b) Write the law of conservation of the species inside any volume € in integral form. Present an
interpretation of each term in your expression.

C Apply the divergence theorem to any terms in the integral representati()n of the conservation law
g
in the previous section.

(d) Write the conservation law in a differential form. Present an interpretation of each term in your
expression.

(e) Search about Fick’s law online and read about it. How do you think Fick’s law could be applicable
here?
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@ 2. Consider two chemical species A and B that undergo a simple reaction
A= B.

The chemical kinetics for this reaction in an homogeneous mixture, and in the absence of flow, may be
written as a4l aB
—— = ——— = —ka|A] + kp|B

where [A] and [B] are the molar quantities of A and B per unit volume, respectively, and k4 and kp
are the reaction rate constants.

(a) Write the conservation law in integral form for species A and B inside an arbitrary volume €.
Define any quantities you need to develop this expression.

(b) Convert the conseevation law to differential form.
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@ 3. Here we will develop the consequence of conservation of angular momentum (this is an alternative

derivation that will lead to the same results derived in Section 2.10 of the lecture notes).

(a) Using the & X pu as the density of angular momentum, & X pg as the volumetric source term
and X (T -n) as the surface source term (7 is the unit outward normal to the volume surface),
write the conservation law for angular momentum in integral form.

(b) Use the divergence theorem to convert it to differential form.

(c¢) Simplify the differential form by using (i) the product rule for differentiation, (ii) the law of
conservation of linear momentum, and (iii) the anti-symmetry of the alternating tensor, to reduce

the differential form to €15, = 0.
(d) Deduce from the anti-symmetry of €;, in the previous section that the stress tensor Tj; must be
symmetric.
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(a) Show that the flow given by (2) is incompressible. Cofudierry OL%”QJ “t
Ec Shatt 3 Q¢

(b) Find the components of the velocity on the surface of the sphere.

(¢) Without substituting the velocity or pressure in (1), write an expression for the force on the sphere
in terms of an integral in 6. Keep this integral in terms of the components of stress.

(d) Evaluate the stress components needed to determine the force on the surface of the sphere

Evaluate the integral in # to find the force.
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1. Consider the steady two-dimensional flow in cylindrical polar coordinates given by

r
u=Ucosf, v=-Usinf+—, w=0,
27r

where U and I" are constants. Ignore any body (or volumetric) forces.
(a) Show that this flow is incompressible.

(b) Show that it is possible to determine th epressure field so that the flow satisfies conservation of
momentum everywhere (except, perhaps, at 7 = 0).

@ v Cplyrdrid

2 .
(17) URoant foewms 2O, Sﬁwlﬂ Stede = 57 <9 - .- p: —
@ 2. The flow in Question 1 is generated by the action of a point force at the origin on an otherwise uniform

flow u = Uu,.
(a) To see this show that the Cartesian components of the flow in Question 1 are

r . r
u=U— —sinf, v=—cosf, w=0.
r 27r

The force disappears when I' = 0, in which case uw = U, everywhere.

(b) Consider the Eulerian volume consisting of a cylinder of radius R and infinite length so that a
two-dimensional treatment is possible. Use the integral form of momentum balance to determine
the force acting at the origin. Assume that the viscous stresses do not influence the momentum
balance (which we state without proof to be exactly true).
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@ 4. Consider a viscous fluid of density p and viscosity pu between two infinite coaxial cylinders of radius R;
and R,, respectively, as shown in Figure 1. The inner cylinder spins with angular velocity w;, while
the outer one spins with angular velocity w,. We can assume that the fluid has reached a steady state.

(a) Which component(s) of velocity in cylindrical polar coordinates do you expect to be non-zero?
Which coordinates would it (they) depend on?

(b) Simplify the Navier-Stokes equations in cylindrical coordinates to the case considered in the
previous section and derive differential equations for the non-zero component(s) of the velocity.

\ R, T

outer cylinder

@ inner cylinder

Figure 1: Influence of shear strain on the material element at a time ¢ + 6t, showing the deformation of an
element from Figure 1 after time Jt.

(c) What would be the boundary conditions on the profile(s) of the non-zero component(s) of the
velocity?

(d) Solve the differential equations determined in 4(b) and use the boundary conditions from 4(c) to
derive the velocity profile.

(o) o,-AZ a2 unutra] velgr: W at JL@M o1 r 01»43.
2 . U o
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. . — = -~ = — = = (Vv
(B Asswmgtirs  gold - 7 YRR T N TN
)
@ v(r=B)= w. R u(rzR): w, R, =0
) L - - = v= =Ar+ B
b 2 (F20w)=0 % 2(=Ar = 2 =
@ 5. Consider a semi-infinite layer of fluid in the region y > 0 in two-dimensional Cartesian coordinates.

The oscillations of a solid plate on the z-axis y = 0 drives a flow in the fluid. Consider this plate to
move along the = direction with speed

U(t) = Acoswt,
where A and w are constants. The profile of fluid velocity in this case is of the form
u =u(y,t)e,.
(a) Simplify the Navier-Stokes equations in Cartesian coordinates for the unsteady one-dimensional

flow w.

(b) A solution may be found by considering that the flow velocity also oscillates sinusoidally with the
same angular frequency w, i.e.

u(y, t) = Re (f(y)e™"), (1)

where the complex function f(y) is to be determined. Substitute (1) in the simplified Navier-
Stokes equations to derive an ordinary differential equation for f.

(¢) Solve the ordinary differential equation for f. You may need to use i = ¢'% and v/i = +e'7.

(d) To determine the constants of integration apply the no-slip condition at y = 0 and that the fluid
is stagnant at y = oo. Write the final velocity profile.

(e) Calculate the tangential (i.e. x) component of the traction force exerted by the fluid on the
oscillating wall. What is the phase difference between the force experienced by the wall and its

O PP o Ly §



@ gatds P - -vprpvia wsouly, 6 €,

. [2e a_g .
Ve=|ex . no fovw = Cr) but ne afend|
F %%) .3y J qradunt,  so
2 > P: W‘#/ >0,
(;g‘—;?—,)u N YA
=4
wdal = ulyso, €)= Acos(uwt), > r~

q(y—»o, edy= O

(b)swwwwwmmrwﬂwd*w
B'F W 2 _ (W =\ =4

a‘a —v—'p C—é )\ - ‘T;‘ e—f J\e

Dergose {:("a)—‘ £, el‘ﬁ * L;, e J

@  flye.00=A 2 bsb =4  flH==t) o b, =

o (= AT o ey s te( Ae” T i)

5 _
() Teadkorm  fonar ouiov? x - /Ag? 2e € =S Re(z): Q;—Zi
Ay ecwt ke - (w T
So uly, t)= —’;i(e J ce 7 b) Aad =
. D iwlb -~ (wé
Troekern = /"‘"a_pﬂlzo = &ZA—(‘-)\C -Ae )

t
\
i
<[e
-
n
g
a
F
A
N—

=«-—[‘_‘?ﬁ %u—dwt—r%) — P}WU%T-"

® HEET S

3. Consider Stokes second problem, where a semi-infinite layer of fluid in the region y > 0 moves due to
oscillations of a solid plate at y = 0. Consider this plate to move along the z direction with speed

U(t) = Acoswt,
where A and w are constants. The profile of fluid velocity in this case is of the form
u = u(y,t)eé,,
where u(y,t) satisfies 1) with boundary conditions N
w(0,t) = U(t), t>0, " ms? (2a)
u(y — o0o,t) =0, t>0. FPomy (2b)

S [T hg):
(a) Construct transformations to non—dimenswnahse u, y and t based on the parametaezllrs of the prob-
2
lem A, wand v. [T = ,J___ rwj_ T' [v]= _/t:_ Ns/m= Ns/:v - L_
(b) Substitute these transformations into (la) and (2) to obtain the dlmeﬂé'lonless form of the problem.
How many dimensionless parameters remain in the problem?

(c) How would the time-dependent drag on the plate depend on the parameters A, p, v and w?

- ~ N \_I——v N v ~ "'WO

K‘O H—AM/ E < S t , ﬁ'— "y ‘2 J/mwrf Q%‘ZM
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[SHEET 6
4. Consider a sphere with a given pulsating radius R(t) (e.g. a bubble), which drives a pulsating spherically

symmetric flow in the surrounding fluid w = u(r, t),
(a) Use conservation of mass and a suitable boundary condition on the surface of the sphere to

determine an expression for u(r,t).
(b) Could we use the Bernoulli equation to determine the pressure in the fluid? Explain why. If yes

find the pressure, you may neglect volumetric forces and assume that the pressure far away from

the sphere is po.
(¢) The radial component of the momentum balance for u(r,t) reads

ou, ow\__op (10 (00
P\ac "% )~ "ar THE\2ar U o r2 )’

Determine the pressure using this equation. If you could find the pressure in b), does it agree

with the pressure you found here?
(d) Does the expression for the pressure depend on the fluid viscosity? If not, why?

> . _cte
(a) V-uz0 = — a,r_[rzul[r,t')>-—0 = wlr, td= _rz_z .
L) s y(rt)= E-’f—z

6. ¢. w(RleY, tY= () => r'= o
Hl
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