
oMactive Learning Summony
CHAPTER ONE

↓&
Statistical LearningTheory-

joint prob measure
Po
-

① Classification & Regression : (x, % + **
-

· Goal : har hix -> X to predict y from X
,

Xclassification
reaccession

I
seature resposse

· loss function : 2 : -> R,

I

Y catagorial I IR
· Dist : choose h to minimise the rist e(h(x,y) #(h(x) + y) (h(x) - y)
R(h) =Ch( , y)dPoy = Ee(hCx T

Rh)
,

P(h(x) + X)
,

G (x) = #CYx=x]
*

y(x)=1(y= 1(x = x)
maxicance a- posto; estigator
-

② The Bayes classier : " = So , 13
,

characterise h = orguin P(h(x) + X)
- U
·Sop1: The Bayes clossfer h

- () = acpinE[(h(x) , %] = S's y(x)z
I*) if y(x)=
-

8 R(h) = ECHEh(x * X3] = ECE(13h(x)# +3/X]] (Tower property]
# = #(1Eh(x) = 0

,
x = 13 + 13h(x) = 1 x= 03/x] Icoses on #3

= 154(x) = 03 x] + 15h(x) = 13 P(X = 0(x) [tating out known]
-

y(x) 1 - y(x)

If y(x) 1-y(x) => h(x) = 0 minimises

If y() = 1-y() => n() = 1 minimises

cases => h : he
&

nation: peterwebeda tom probabilitydribution untn...
X Inactions Ej : x H I'-- I

& -e . g. f) = Sh : hk) = So (b+ je,() ,

wid
,

be 13 &- W~

Given set o basis

women

111"II"s& --&-I -
- - -

-③ prial Dist Minimisation & Hypore's classes &
-

V
- "invar

·Suppose (X
:, %: )Po for it El, ....

n 3. The empirical riste is

(h)= Ch(xi) , Xi)
,

h = arguin R(h) clearly ES R /L)] = B(h)
he 2
--

· E.
g. Linear regression empirical vist & C(h)] : EC (h(x : )

, xi)]
Minister

- X = RO
, X = 1

,
+ (z, y): (z-y)", 2 : Sets boxin ,

we RP , bER3 : [e(h(x: )
, vi)]M

- [() = xTi + 5 w/lb , i) : organis -Xi-
= - n . R(h) = R(b)

· E. g.
k-nearest bours

- X = E-1 , 13
,

consider I nearest trings pts to > and assign be most common label.
- dz = (11 - x : 1)

,
If indexes te smallest entres in do

, h() = so (F)- longer hyposses's better bases cossiges
n-vector of distances class approximation -

--

& Bias-Variance Trade off : larges be best he estimator
,

but more sensitionclassby marsa
a

-

· Regression Example
- Dataset D = 3(X:, % )3 dawn did from Po

,
Note: cross term dissapears

-

j() = 1E(X(x = x] expected output #[E[(ho(x) - y(x))(y(x) -x)(x]] = 0

- hp() is the hypoess kart from D

- [K : = #Drprthy()] expected clossber by tower property& taking out trown

expected test error noise

-

#(1hp(x) - +(2) = E((hy(x) - y(x) + j(x) - x() = (x) · j(x))3]+ Fy(x) - -(2)
C#)

-
(*) = EChy(x) - (x) + 5(x) - j(x))] = -(x)]+/x]+2EY· Notes do scoreuf -NN

varie basIstepped as too hard 4 etorn] & Trompe => ↑ variances
, 31 complet => Abias



· Loss Validation : Split dataset D = 3(X :. X:)3~Are#- #trains) Etest
Pict te estimator which minimises De empirical iste.
↳ v-Lord splits data into v sets , pute to arguin En ...

⑧ Excessrist : Given an estimator h
,

the excess rists is given by
E(h) = R() - R(h) do-

Idea: will theoretically analyse~ Baselossier
thisfor different class

X

0Note . "No bee hunch" trans - impossible to lar All probability
- How does I complexity effect E ?

=
- How does#datel pts epect ??

distributions out e assumptions. -xX X X

XX
X ↳

X X

*
X - B

* T X

· Example /Learning Rectangles) : X = H
,

= 50, 13 - : karn h() = 1pk] = &1 y ses

uncensees /
goal

1 o yeBGiven ind data (xi . :)EXX us X =Ely xiers ↳= 1 were Bis me smallest
0 y X: B

rectangle containg pts labelled as inside B
.

Note : Rh: ) = 0 : he = I is the Bayes cossifies
PAC[(5) = R(n) = 1P(h(x) + 1g(x)) = P(x + B1B) + 1P(x = B(B) E B = (a, b) + (c, d]

D = 0 - B correct

-----
- approximately probably

-

· -
·

Q : How
many samples to ensure IP(R/5) = 2)c, 1-S ?

-
A B -

-
.

·

1 - B

-
&

B

&

- Assume P(XEBK 20/w
,
R(h) = P(XEBIB) = E truially !

-
- Define R

,
= Ca

,
a 'Jx[c,d]

,
asmallest s . t . PCXER , )? -

- - d -

............- -- - Def R2 = (a , bjx[c , c],
c'"sit

. PPCERaley d'E- - -

--

&

- Def R3 : (b
,
b] + /c, d]

,

b' largest s .
"

. IPCXER3] 4

Note that

&

- Def By = (a , b) + /did]
,

d'hugent s .
1 . PCBylsE ..-----c =

nR : = qvi) = P(x(BIB) = 2 so P(RI) = 2) /BURitq vi) · "m
T = 1- IP/Jis .t . Bri = q) a al

3 R ; = i3 Er() = 231
↳ I-PBMP= ) Junio bd]

4)(D :
= q)= (X; D

; ) = /-)"=e so can out together

P(R) =s) 1-4** 1-5 ES4e ** #-Log( Y ) c - E nc, Blog (*)
we want to minimise: As he - Ig ,

R(h) = 0
,

now consider hel so Rheko⑧De excess rist
excess riste

-

Decompositionof Excess Dist : R(h) - RIG) = B(h)-infR(h) + inf R(h) - B(he)
hes hel
--

rist
M

-
Estimation Error Approximation error

R(h) Ta
wate S

error
Ivaril] (Bas]

proximationerror : Need assumptions on he Po
era e .g. - (ly . z) L-hipscitz its. Den~hen; posta

R(h) - R(h') = E(e(h(x) , x) - eCh'(x) , x)] = ECI'(t)-h(x)l]
=> Assume ho() =WT() for 4(): (1,

x, . . ., 4 p,

x
,

3
,,3...)

complexity of o
and H = Ehu(x) = wiy(x) ; llwI = +3. Then

zeroyint R(h)-R(h) = Lim EC4( , wow]I
& The estimation Error : consider for En = (E114(X)11 maxE11Well-t , 03-

letting h = again R(h) ,
note Rat (h) is as small as -

=0 Possible : Es
nes

-Ern
:= int Ellw-w# ll3

1 1/w/l= H

R(h) - B(5) = R() - (h) + (h) - (5) + R(5) - R()
-

estimationerror
-

for h = Sup R(h) - R (h) + R(5) - R(5) Crelaxing conditions]
n = 2

Note : (IT is asymptotic
result so no quantative 2Su (RCh)-l GOAL : I(n/R(h) - Rch)(ct) = S
bounds ... we need

concestration inequalities ! Preiselyconte estimatureis



· Tods from probability ↑IX :
- #(x : ] ,5) = exp)-a) ) CHDP]- E

& Martiov : ↑(wc, t)] => P(tX :
- EX: 7) t) => Set 8 = tu heave =

t
↳ Chernof : P(wc, +) = in + e-ctE( explow)]

xO

D Subbanssion : W sub-sanssion / parac o f Set-Eubl] = eCo2 Fact

↳ If w sub-gaussion
,

P(W-E/W] th = e't202 Vt > 0

↳ If we (a , b] => W sub-gaussion n/o= E
↳ W

, , . . . , We independent . We subsansion we param oi ,
then FFE",

M

· Vih; sub-g .
us param (20:

20
:3)

& Hoeding : W
.. . . .. Wn dependent & a: W

:
= b : i

.
Den EO Z= W

(-E-E(z3(t)= zep)-
· Finite Hypothesis classes : (Thm () Assume M(h(), EC0 . 27

,
these .

E =

orguimRI

18k0. Then at last 1-S
,

the ERM h satisfiesw/ probpormation
error for
-

R(5)-RI) =((v+s

& If h = => D(5) - R(n) = 0 = P(RI) - R(5)(t) = P(R()-R(5) > E ,* 5)

By (*)P(R(h) - R(n)ct) = P(R() - R(h) + R(5) - R(5) t , = h)
=> P(R(5) - R (n) < Ez ,

h = h) + PC R (h) - R15K +)
--

(**) #* **)

Board #***) v/ Holding ·
/2) - R(I)= )

, xi) - ECC( , X: )]

22

So

P(R() - R(5) El = exp)-Z)=

when +h
,
R(h)-R() = nig R(h)- R (h)

,
so

# * ) = P(7441523 : R(h) - R(h)(E) = [P(RC)-RCh) < E2) Curiobd]
herels is

-

nt2
= (181-1)exp(zi) [Hoepding]

: P(R(n) - R(5)(t) = (4(exp(-) = S
#)- log(17 c - 4th
ES t < 21 log(14() /n

Me: P(these ,
R(h)-R(h) =t) = 1- P(These

,

R(h)-R(E) <t) Sidele
-En

can use this dea in model

~
~ 1-(R)-R)

=

selection (how to chose H) W/ => t= /si
techniques known as structural

Me)-E) Choreding)
2n

riste minimisation

Ele(h(x) . x)] S

z

i these
, PIBILogT1-8 Cheds for h=

-

cannot be evaluate / data
computed

Example : X = So , 12 2 portioned into me disjoint squares bath In each
.

121 = ze" &apply
-finateHypones's closses : (2) = 0

,
As R(h) - R(5) = B(l) - R(h) - (5) - R(n)

#(R() - B(A)] = IE[G] 6 : = Sup R(h)- R(h) GOAL : bound IEC6] & home
- + H bound be expected is

I tate expectation w
Y = E-1 , 13 => BINARY CLASSIFICATION canwilethis for ease

...

-

Set Zi = <Xi · /i)
,

consider 5 = 3, y3te(h() , y) ; hER3
,

6
=Sup Ezi))-I



↑
↳ Rademadier complexity : F class of f : -R

,
z, . .

.

.,
En +2

-

& F(z , .n) = &(f(z,), . . .
,
f(z- )) : FEE3CR" is a collection of

rectors

giving
the behaviours of F on Zin

⑥ The empired rademacher complexity is

-
how closely aligned

is your classifier
& (F(z

...
) := Eli ] on your dataset

?

"

w/ (Si) ?" ,
iid rademacher

.

Mis quantities how close f(zin) is to random cabels.

⑥ Take Z
, ..., En as R. V . The rademadier complexity isI 9) (5) : = E[R(F(z , ..n))]

Pros are

& (F(z...
r)) : [S : +(2) 12

,
n]

some examples ... pets sup + carefully based on situation.*bdEZn
--

imediate

?

8: setting above, E(f(z) - f(zil] =I⑳non-excmb.

I
i = 1 -

fi -independent
consequence depends on Z: distribution ... complet g Po

↳ Lea : F : = <(x , y)+- e(h(2 , y) ; he re3 .

Then
THE ESTIMATION ERROR

&- Bins] = 2 R
- (E) RADEMACHER COMPLEXITYI

End up w/

MAIN RESULT OF SECTION

IS CONTROLLED By The

~ple9/LinearModels) : If e), y) is G-lpschitz ,
Don F = &e(his , y) , he hl3 satypes

& (5) = GRn(2) · Take x = Shw() = wick ; Iwll = R3 .
Then ...

long & Lord
... #(r()-Rhi]=I independent g

↳
won't come up... M

e dimension !
study/ ve dimension
-Aimension : Bounding expected rest -> bounding rademacher

complexity
degiven dad E

.. n .
count behaviours of : (F(7

.. n))
Note : 15(z

, :n)1 = 12912
,in

pardon .
O

· Have an injection F-X
-

- i= /lemra il : w
, ,

. . ., Nd mean zero s . g .
= E[manwj] = o toyld)

(2(h(x: ), y :))" (9(4'k
:),yil)"--

Py : use MGF
, add more terms & optimise

I
- h(x; ) + h'(xi)

loss composedis , h
-F&ma 10 (Massant's Lemma) : F = Sky) +- e(h( , y)

, here3 ,
e take values in 20 , 13V L DIM

↑CHIEVES
Then - orderI convergence25(z , n)) = gk1z, ..1 g() ..⑧x just life the finite

n sum of case for 121
-

n subsaussie
7By dof have EC sup 2 log Id

vec(z
...
) S : vi] ,

see need exactly Emma wj] =or2. Let J' = Ef, . . . , fd3 5. f

C R. V.

Y

w/o= 1 so apply n -

-

-
Let d= 1f(z , . n)/ Limite jassily Radesacier R.

V
. Sub-gauss in

I + (zi) E: sig. /:so ↳t Wj= 17):
parameter

[2 i =

= Eestimationm r)] = 215) =2
~

top grows shower
each entry If ran bottom => 12/X

,:n)/
- to be use slower Mom

IIt YeE- , 15
,
se(in) = Elhki)): I : here 12: n) =2! exponenta

-

e.g. polmonial

Sinceriseclasses of free e Massant gues-bound.
othrise, estimation error umbled > useless loss of functions !

&et: Let 2 be a class of functions hit-> Sa , b3
,

a + b
.

181, 2.

S · 2 shatters <, ...
X" it 151( ·n)) = 2

"

"every possible labelling is achieved on in

s(

Des
(n) = pat(((. )) is the shattering coefficient/growth function

"max # behaviours
definition on n data points

using x =

·

The denseoutspenzettishattered



&my combo norts

To chees UC (2) = n : ① Find some .n
that can be shattered byse shownowagata=> piS

=>

by x
Example : X = R

,

= 50 , 13
,

2 = Elsa
, b)

: a , bER3
,

Given data x
, x2 ... en ,

how
-

day
distinct vectors in 29(.. ) ? If

,
ad a in the sarre interval (x , xi+1]

-

- (j))((a
,b)j

Thereare n + 1 intervals, Ifd&b'om me"" 1 , 43
-

#

so we get be same behaviour. (ii)
,Note : To show be bes be .

p b=

vc dies
so as an upper bd

,
n + 1 intervals to place a

,
n+ 1 intervals to place b = (2(X .... )) = (n+ 11

3

ve(ses

#CDIMENSION : We get 1f(x. n)( = (n + 1)
n = 3 x

: z
= (

,, xz
, 33)

n = 2 xin = (x
,, xz)

-

Se b 10 , 1) z&&I I
x

, 3
1 . 03ihis se ↳ (1 , 0

, 1)

: 2
can be shattered H :3 cannot be shattered

↳ all possible labelings achieved vc(s)= 2 ↳ 11 ,
0

, 1) labeling not actived in se

&non-examb
.

= d
~Shalah beama : I a class we pil ve dimension d

, then Ip(n) = (n + 1)

so
,

overall
,

12(z
....
/ = #y (n) = (a + 12d where d = vc(x)

,
so

- -Than & massest's
Keena

E(r)-m+ Rin] = 29(5)= Ilogtohe se
-

expected estimation error

CHAPTER TWO

----Optimisation argisio (t) = EWER : +(w)= in of cu
⑧ constrained Optimisation : F:R-IR, goo : int fiw)

· wERO is a
WE IRP

is global minimiser f EWERO fIw * )Ef(w)
11 ↑↳ local 7 = open nebourhoodUof w

*
St . flu* ) = f(w) Freu

↳Strict local "

J
17 - 11 11 12 /

f(w
*

) = f(w) Fwe VIEW*3
↳ solated local minimisey

11 1 I / 17 local
in which wo isme only minimiser

· A set C is convet of Ew, rec
,

#Eco, 13
. tre/lime C

· A function F : S->IC convex if f(tu+ (1-t)m)Eff(r) + (1-t)f(u) Fr
,
meS

,
+efo , 17

strict !

↳ concavey -f conver unique

· f : /P-> A convex .
Then

any
local minimiser is a global minimises .

It strictly comet
X

: probs won't come up...

· Recall that f:
P
-> I dif = f(w+ v) = f(u) + = of (w),

w > + 0(Ilv11) [Taylor]
·merisationof conversitya differentability : vTArc,

O Fu

(i) Iff diff. - convex # tw
,
reRoflwk, flui + Of(v) (w-v) ~L

(ii) If- treeding + conver # Hessian O2f(v) positive Semi-definate FreAP

&f : pops won't come up --

· first order optimality condition : - convex & diff . Then-o
* tarquis(t) #) Vf(w

* ) = 0
- -

8 '' well brown
,
E' convexity = f(w) c

, f(w * ) + 0 f(w* ) (w - w*) = f(w * ) = w minimiser o

#M : f(x) = -xVf(0) = O but ① metierser (Aw-b + Ac)T(Aw - b + As)
= f(w) + = Aw -b

, As> += As
,
Aw-b) + 11Azll

- (x) = x
3

- f(0) = 0 buta not local minimiser

~ple (LeastSquares) : f(w): llAw-b12 At R
** P beRR" · As f(x + 2) = f(x) + V f(x)TE

f(w+ c) = 11 Aw -b +All = llAw-b11 + z = Aw-b
,
As >+ 1zI => Of(w) = 2AT/Aw-b)

Convex => ↓
*

minimiser of ATAw*= ATb
.

If ATA invertable (ter(ATA) = 303) ,
then WF = (ATAS"ATb . (Not ot = 2A"A is useld for time dy]

· identdescent : can't compute we duguin/t) is closed form => construct wp-w
*

[investing big matricies? He&



< direction
off ↳nationof steepest descent : Require < Of(0)

, p >= O as - off) is the

⑳ -direction of steepest descent
.

Not: 1) is orrogonal to level sets.
v C'(0)

6 RADIENT DESCENT -naming rate p
W

~

c(t)e/ Wot"
.

For K = 0
,

1
,

3
,

3
,
... Why ,

= WR-Epof(wh)
Step-size

↳ choosing me slepsize : Not too small [Coverse ASAP)
,

not tooding (Increase f
,
not converge)-

A& Greedy choice : = = organ h(5)
,

h()= fiwp-50f(will

compute n'(t) Set hty) = 0 extent
h(i + 2) = f(wn - [0 +(wn) - 20 f(w+)

= f(wn - 20f(wn)) + 20 f(wn)of(Wh = EnOf(wh)) + O(a)
- => h'(l) = 0f(wh) +

+(We - [
+ 0f(wn)) = 0 => 0f (wy)0f(wh+ 1) = 0

↑
As 0f(w)8f(wr+

) = 0 => Orthogonal gradient descent directions Zef - Zag

⑬ Armige rule : Finda that sufficiently decreases f . some backpracting his search
-

Example (Least Squares) : Greedy choice => 0 = 0f(w) Pf(Wi+ ) = < Up , Wheel
-

WH+ 1
= We

- Eit , Up = Of(wp) = AT(AwR-b) E ... = Free
↳ Presence Analysis for GD : [don't need poops for etors

,
state results here...

· If =Emin[EhE Ymax = E .

Den Ep + (0, 1) S . t . llwa-W
*
l = - "Ilwo-w * 11

(convex Problems
Bit Wh converges linearly to w

* CL largest eigenvalue for <: f(m) :: ' Cu
,
wh

-
= w

,
b>

· f : S -> R dy ,
SCIRP convex

(i) - is M-strongly
convex of Fes

,
= Of(x) - Of(x)

,
x- x')

, pulls- x'll

(ii) + is L-lipschitz smooth if
" 11 Of(x) - Ofk'll = LIk-y'll

↳ These imply + can be lower & upper boded by quadrates-
Main result on convergence of GD

11Wr-w= ePllwo-w *
11

&mathemat---

-

·

Stochaste GradientDecent whatforeaciteration t,canan under i una
minto Echi) ,y⑧#(of

, ,
(w1] = Of (W) · P(i =j) = t ofj(w) = 0f (w)

2(z, y) = = (z -y)
So

, replace expensive gradient computation by finim fi (w) = z(wix :
-

y ; )2
Stochastic Gradient Descent Highly relevant tes m L

tateNot
,

for =0
,
1.2

. ... When Wr-Pin(we) intln33 Wh dom

Empe: fi (m) = Elwi : -y : ) => Ufi(n) = (wix : -yil· If WERP Exa data points,

Ron each of Son costs O(p)
,

each to g 6 D = 0fIn) => 0(up) = n times
cheaper !

↳Im19: supposef M-strongly corvet
,
llfwilli .Let

#[Iw-w*]= Where R = max Ellwo-w* E3
Resorte:
-

· SGD much slower man GD . Only weatly benefits from strong convexity &no linear rate
· Advantage : SGD makes progress towards W

* wont full pass throughadata points.

largedatasets
, you might only mater I wall pass) .

IP
⑨ constrained Optimisation : ConsiderMrfo(w) subject to Awb and fil..... m

, filu
-

w/ AER*P ,
beR"

, fi :RP-1
· Assume fi convey I place where

all me· Feasibility set of (P) F := SWER" : Fit3l, .... m3
,

fi(w) = 0 and Aw = 63 conditions hard

wEf
·

der Optimalitycondition
:

Let becomeddefconsider minf(w) for F nea



- convet assumption
↓ ↓

8wwwmini seor some we-

Let 10, 13
,

define v(1) = /1-1) W * + twEF
. Define g(t) = f(r())

g (A) = 0f(v(t)"(w-w
*

) [chain rull] => g'(0) = = 0f(w*)
,

w - w* = 0 [assumption-j
so of decreasing at + = 0 => f(v(1)) = f(v(0)) = f(w* ) #I sufficiently small X .

①-

↳

DualingPrimaldual offerdistent perspects towosoa by
L(w. 3 ,

2) = fg(w)+(Ax - b) + Gr f ym)
- H = 1

-moration unear ·requalitiesI
,

o are he lasonge multipliers 8· The Lagrange dual function is D3 ,
4)= /w

, 3
,
2)

:ig whe m, g
, 2)

umbled from below

D(g,
r) = - 0

↳&Property 1 : Dual function is concave : 13
.
01/ D/3,

2) Linear in 3
,
0 wiseofna

so conret.

↳ pety2 : Dual lower bounds t fom)
= O

-

D (g .
r) = ((w, g , 0) = fo(w)+ x - b)+ fiw) = fo(w) EwE

= O

rating suprem => D(3 ,
0)= to to (w)

· The dual problem to (PS is

matGER"WernD(g . 2) S . t . Us, o (D)
#TKT CONDITIONS

· Let (gt ,

Ut matimes (D) and we minimise Peisbilityconditions

↳ weate quality : D(g*, U
* ) = fo (w*) · nequalites = = ~/ multides

· VL = 0
↳ strong quality : D(G*, V

* ) = fo(w * )

It we have ILong
- how are go, quality ,↳shong quality hard ? related?

If w*
,

r +, Go optimise (Pland(D) & strongLids, then following telet word:drahty⑫ecmatie an 2 -fi (w+ ) = 0
,
Art = b

,
U :* 0

Wifi (w) = 0 Fiel, ....
m

Strong duality Golds [J pt in te INTERIOR]
-to(w) + [rifi(w) + ATg

=

= 0

-
M m

why ? fo (W*) = D(G, 0
*)=info(u)+Awb +[fowEt--

=owef

= U: 40
, fi = 0

yelds & fin = oWit VitE1, ..., m3 [complementary slactness)

-
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+ ) => Vr ((w, gry) = C
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hear clossier
⑳ support vector Martines : Date (xi

,
V : ) Vit & B

, XitR ·

God- h(x) = syn/wix + b)
· How to piete h ? Maximise distance to closest

= WE RP , be IR
X

Xdata point in bord classes
. Music betwee H

,3x3- X

X =

- /w , b) =min Ellx-Xill ,
i =,..., n,H T x

+ -x Note : h(xi) = X:

· Distance to hyperplane .

Given ERP
,millx-El:

t
X F

X

-x # Sqn/wixi + b) = Y

- 8⑪ Geometric arguement : w orhogonal to hyper place
x t E) Y (wixi + b) > 0

so projection of ontoH has H = Sx : wic + b =03 e Vi = - 1
,

h(xi) = 1 -> + we

~ form z = x + tw for some telR. :. : = 1
, h(xi) = 1 -> fie

-

--- -
- --- ----

: Require zt H = - b = wTz = wix + +11 wil
3

&

so SUM is

# t: "
matminw

mid En 1 wll

=> min(-z =wil,· S .t.
X

,
(w+xi + b)

, 0
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⑧ Approach: Optimisation problem : mi 11-z St . wztb ( s given data]

Lagrange function : ((z, 3) : 1/x-z11 + g(wiz + b) E (vi) - z(w+ x) + b)

& Lagange Dual function : D(g) = millz-x112 + 9/2Tz + b) WI-15w + 3/uTx + b)
classifier

S

Find w.b to may E trong quality : Holds :· conver proble & Jz c . 1
.

vTz + b = 0

&

First order optimality : Minimiser in D(9) satisfies Pfp(ze) + At = 0m Submin into D(S) : D(S) =
- 31Wp + g(wix + b)

- 11wip + G(Tx + b)

so 2(z +
- x) + gw = 0 => zv = - 1gw + x

5. Vi </w+ xi + b), 0 Dual problem mat D13) : maximiser satisfies OD(g) =-R +-

g
↳ g* in

salve u/ optional zo : 11 Z5x11" =

· seats mariance :

Uwtb)b
(sum) w , b

5+ (wTX: + bK,
0 and 1b + wTX ; 1

· Primal Commutation : Absorb conditions : all S .t . Xi Criti + b), 1 v : (P)w
,

b

support rector active
. Data s . + . X: (wix ; + b) =

· Dual Problems Sum : (P) is connex. Assumed separating I existsHAVEstroom#DUALITY ! support vectors
↳ Lagasse function : ((W,

b,) =Illwil + g(1 - X: (wiX : + b) too SERO , M, be RP: 1

V

↳ Lagaage Dual : D(3) = in+(w) =+I + 3: (1 - (wixi) + int -d: = 0 = S
,
% =0

w
↳ First oder Optimality : W

,
b minimise D(3) , Don

- ((w,
b

. 3) = w - [3: x :
=0

, 21/w,
b

, 3)= 3 =

↳ Formy Dual :

e(g) : 3 Il:x : 11+E
.

3 : % + +3 =0

- 8 on

↳ Then use food of dual & complementary stautress : 3 :
(1-v: (wTx : + b) = 0

· Non-exact separation : see Q6 . 3. You allow some mistates.

· Non-linear Decision boundaries : Project into higher dim space where you ou have
-

-
- -

a linear separator. Define a feature
-

- - ----
-I ---

map I : -> Ad
--

-

-

- = & (x) = (4jkx)j=,
ej : xeir

+
basi quarters

--D- L Hypos's class :

d

-

/ x = \h() = wTf(x) + b : WEIR! beR3
-

+

Ff

S

+
+

Sum in this setting becomes

·

ermls :Goals avoda he dir a

( =3:3
S . t . X g = 0 and 30

Point : dual problem reduces
=

to evaluating the terrel1
Examples :

==(90Y
, kn(90x))

*↑↳: = (H(X: ·xj) ,

Imatry)
,
Go = (5:% creators can avoid hordling hier

dimensional I explicitly

2

I
⑦ polmaterm a d plana

i = / i
,j= ,

& feature rector : <(x) = (x ? <
, xxx , x Ess

, Ex 1)
&int : xEO

,
t(, z) = (Tz + 1)9 -> feature space has dimension (1) [all moninomials 3 deg =J

Whileworking in O(pd) discussional space , computing H(z) is O(p)

S



⑤ Gaussian Herrel : 1(
, 2) = expl-1 o↳

Practical considerations :
-

· You choose terrel. Not always obvious , popular. low approx. erros

· choose d in / o in via cross validation. Big feature map -> high est . error

· herrd Sum works best w/ small/medium sized datasets.

CHAPTER THREE

-al Networks--
sel Os for↳

T
~applied=examples pointest
L

MultilayerPerceptions : consider functions of the form Hw
,
a

,

b(x) = a o /Wa + b)
· Universal Approximation : Assume o : I-IR non-decreasing its him (vi = 0

,

him 0 (r) : 1
minine
eme

L

- -- 198

-
↳ For any compact set RCRP

,
the space spanned by One functions [wo as II

THE Jo = & 4w
,
b( : = o(xTw + b) ,

WEIR"
, bEIR3

Con dense in C(m) w/ unyon convergence. This mess for ANY continuous

THEOREM Junction f : r-> I and ANY ECO
, JgeIN , wjeR" , aj , bj ERR S . + .I -

( f(x) - an (m
,

d
, ()) = E

I
kil
-

Proy :
-

(Fund. result in approximation maye

iBetambin anEsty JfEE Sit. fitfly) · Then E is dense in Clo) my unigoun more.

e Fg : r -> Acts
,

IfeF St . Ilf-glo = E -Fundamental result 188s

not: point separation necessary. If x
,
x' cannot be separated= > AftE f(x) = f(x)

Owen define of
Its s . t. g(x) + g(x') & my f can appor.

E.

g. g(z) = = z - x
,

x - x
. g(x) = 0

, g(x)) = 1(x - x2 = 0

Example : Eye ((m) , VE10
, IfeSpan Jeep S.t . Ilf-glle = <

-

I verity stone-we'strauss conditions
· clearly all fe Fep are continous

· x- exp( = 0
, x)) = le Jep

· Span Jeep is a linear subspace,
hence on alsebed : e'-ete

·Point separation of +y , piete f(z) = exp(= z- x
, y

-

x)/lly - x((z)
f(x) = exp(0) = 1

, f(y) = exp(1) = e

· Deep Neural Networks :Idea is to starte several layers ofperceptrons-

F'(x) = -(wix + b)
,

-

F(+ 1
= o(w

+

k
+
(x) + bk + 1)

,
6 Id,

call F (2) a neural not of yourat d = (d,
. . . . ,

d
: ) . H = EF : R- Pede : F NNW/

Jonat d3
↳ classification : d= k x assened to orguar F

: ()

-Depression: output h(x) = aTF(x) aEi
perform ERM

-

AutomaticDifferentiation : To find paras of NN , n (h(:) w SoD
.

Gradient be

complexity· Finite difference only gives an appor, Symbolic diff memory intensive
. Antodiff is exact. Some as

eval- Susectio
·Computational graphs Example : f(z,, zz) = (Sin (2 , zu)

, log(z) + z . zz):
↑

-

· Forward mode FORWARD PASS f(2, 3) BACKWARD PASS : Initalise Zy = 1
, Eg = 1 = zm

means
mem

· Reverse mode z
,

= Z,

· Dual numbers z
=

= 3 i=+
cozu=s

logz,
z3+ z4

g 8 zz = log 2 z2= = (1 + cos(6))z = 2 + 206-Z3- 26

-- zx = 6
z =E+= (x + (1 + cos(6)) + (2 = ( + 3 + 3cs(6)

* Zg = Sin(6)
8-zu

so Of (2
,3)/!) = 13036 206)(i) =ScostZ , zz Sim(Zu) zc = log2 + 6

COMPUTATIONAL GRAPH



↳ Gradient descent is a special case of his w/ + :RO-R,

I discrete
⑬ Entropy Loss : The pro distributions P

,
Q on sood sample spacesor

· KL-diversee between P& Q is RLPIQ)=Elogp
↳ Q (wi = 0 => Plw) = 0

↳ hL/P19)>0 and KLIPIQ) = 0 J P= Q
F(x) =/r, . . . ., VH)

·Is class classification :

↳ to output a probability vector
, post process va pr

↳ u (F( . y) = - Ey;log(pj) Cross entropy loss] j
=

&

-not Binary dossification & (F(), y) = -

yloyp -(1-y)log (l-p)
, p =

1 + e -
v

minicriss [log) 1 + ely ,missi))
⑭ convolutional Neral Netroress use in asse

processing applications-

·Conventions / Fourier transforms
↳ Hog)(t) = St(upg( + -xd>

↳ won't come up surely ...

· CNN : a feedforward NN x
* "

= o (W *x" + bt) EMd
/

where ne = # spatial positions ,
dr = # channels e . g. ROB = da = 3

.

↳ spatial position & to ensurehauslation maraxe
,

linear operator
is a convention opperator. (convolutions are she only linear operators Dust and

Frontation inorient)↳ Gret poot to #pizels . (summary o no in a window gsizers

↳ Fullyconea 3 carry out DeMax

Poet & laste /e-

g2
. g , clossfecations

convolution CNNan langer artitecture #mb it is

nectiveAdversarial Networks : vool : Learn be distribution ex of one inputt

· GANS· You have
- Data space X u/ pot IX

(compressed up. o xx]
- latest Spect z w, pdf ez
- 6 : zX generator
- D: x -> 10 , 13 discriminator,↳tea (D, 6) pair

6 OALS :

· Discriminator D aims to discriminate data sampled from ex andez
· Generator 6 aiss to generate data in X that's indistinguishabl from IX

↳ Pushforward measurepf GTz

( + (x) +y(x)dx = f +(6(z))7z(z)dzVf : X- R measurable.
X

Z

Am : 20
: -x

min man (6
, D) ,

v (6
, D) = Slog(DR)Did + flog (1 - DK) 9 <(d)

2



⑯ variational Auto-Encodes [compact representation of him dimensional data]-

· why ? To visualise data
,
I nose

,
I resources, XCIP - Z

↑ personnance of team fasts (e. g, dissipation 6

lower dimensional
· Idea : Emoder E : X -> Z - representationO D

⑧2

RPxx> Gluc = ze
&

Decoder D : z-> X (Takes a representation
-

z +-> p(z) & reconstructs it]
· Optimisation poblem : pxd

him PE())-xi wda
· VAE : model D&E as NNs

,

GIVEN
↳ zvqa( . (x) Data [sample from Rose conditional probability distributions]-> ~Pol · Iz) Brepresen

tation
To generate data

,
new sample z-pz Des draw from data space Pol(z)

↳ Model me joint distribution as p(x , z) = po(x(z)Pz(z)
↳ Pict Pz

= S/0 , Id)
↳ model pol1z) = N(60(z) , or In) where 00: -> IRP
This is good : Tz & P(1z) simple gaussians -neusal netnort

& can model complex Pilater

Pa
= (po(z)pz(z)dz
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Useful Formula

& ECX] = ECE(zIw]] [Tower property)

② ElgInizIw] = g(w)ECzIv] stating out brown]

② P(AIB) : IAA (Bases Theorem] & PHIB)=B) , PLBIA)
&int Ellw-w = maxElwell-k (I approximation err .a

④ p is a descent directiono + f
< p . r+ o

& f(x) = f(x) + 0fk
·
2) + h .

8
.

1
· (implor expansion]

a -0

& o (at)=> 100s Iserod is its appor to hearside


