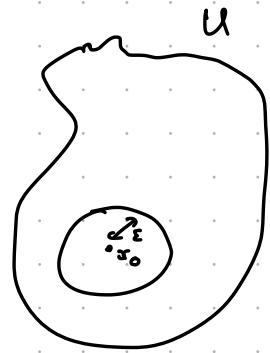


Note: 4 assignments

Lecture 1Def: A metric space X is given by $d: X \times X \rightarrow \mathbb{R}$

- (i) $d(x, y) \geq 0$, $d(x, y) = 0 \Leftrightarrow x = y$
- (ii) $d(x, y) = d(y, x)$
- (iii) $d(x, z) \leq d(x, y) + d(y, z)$

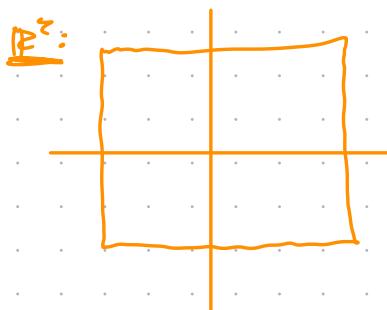
Example: $X = \mathbb{R}^n$, $d(x, y) = \|x - y\| = \left(\sum_i (x_i - y_i)^2 \right)^{\frac{1}{2}}$ Def: $B(x_0, \varepsilon) = \{x \in X : d(x, x_0) < \varepsilon\}$ ← open ballDef: $U \subset X$ open if $\forall x \in U \exists \varepsilon > 0$ s.t. $B(x, \varepsilon) \subset U$ Note: \emptyset & X are open, finite intersections of open sets open, arbitrary unions of open sets are open.Def: A topology on a set X is a collection of sets \mathcal{U} which satisfy

- (i) $\emptyset \in \mathcal{U}$, $X \in \mathcal{U}$
- (ii) If $U, V \in \mathcal{U} \Rightarrow U \cap V \in \mathcal{U}$ [finite intersections]
- (iii) If $U_j \in \mathcal{U}$ for $j \in J \Rightarrow \bigcup_{j \in J} U_j \in \mathcal{U}$ [arbitrary unions]

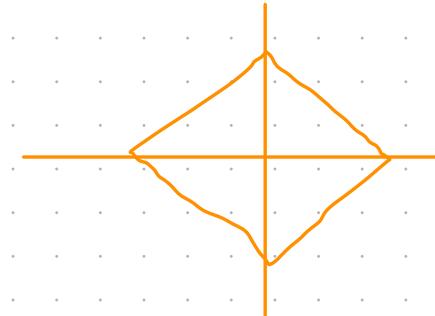
These are the open sets.

 continuous maps
between topological
spaces

Multiple metrics can produce the same topology...

Example: Any norm $\|\cdot\|$ on \mathbb{R}^n gives a metric $d(x, y) = \|x - y\|$ & all metrics on \mathbb{R}^n coming from norms yield the same topology.

$$\|\cdot\|_\infty = \max_i |x_i|$$



$$\|\cdot\|_1 = \sum_i |x_i|$$

Shortcut to defining topology:

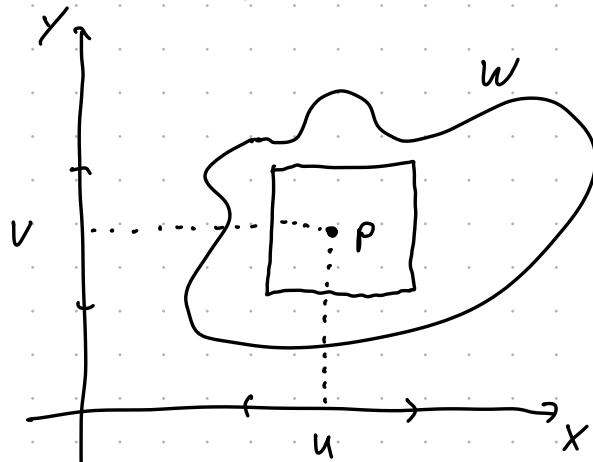
Def: Say (X, \mathcal{U}) is a topological space. A collection of sets $\mathcal{B} \subset \mathcal{U}$ is a basis for a topology if for each $U \in \mathcal{U}$ (each open set), there is a collection of open sets $\{B_j\}_{j \in J}$ in \mathcal{B} s.t.

$$\bigcup_{j \in J} B_j = U$$

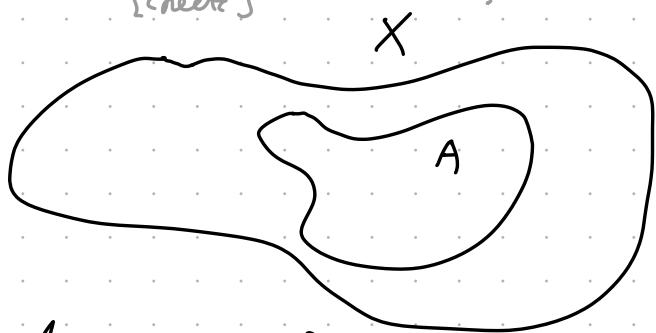
 enough open
sets to write
out if an
arbitrary set is
open
Example: The open intervals (a, b) form a basis for the topology on \mathbb{R} .

If \mathcal{B} is a basis for the topology (X, \mathcal{N}) we say that \mathcal{B} generates the topology X . (A more efficient way to describe all the open sets, instead of just listing them).

Def: Let X & Y be topological spaces (\mathcal{N} is implicitly there). The product topology $X \times Y$ is the topology generated by sets of the form $U \times V \subseteq X \times Y$ where U open in X , V open in Y .



W open $\Rightarrow \exists$ U open in X & \exists V open in Y s.t. $U \times V$ open in $X \times Y$?
[check]



Def: let A be a subset of a topological space X . The subspace topology on A corresponds to the collection of open sets $\mathcal{N}|_A$

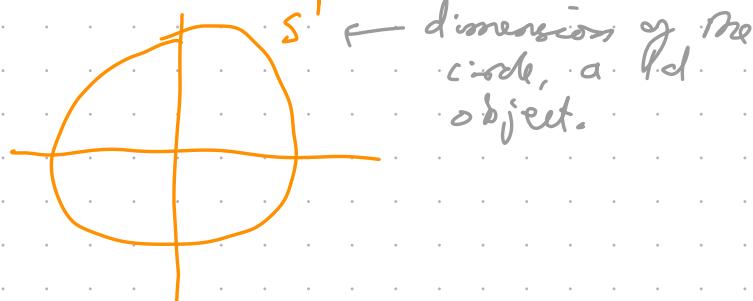
$$\mathcal{N}|_A = U \cap A \text{ where } U \text{ is an open set for } X.$$

Example: Let $A = [0, 1]$, $X = \mathbb{R}$, what is the subspace topology?

- The set $(\frac{1}{3}, \frac{2}{3})$ is open in A wrt the subspace topology (open in \mathbb{R} , & get set back when intersect w/ A)
- The set $(\frac{2}{3}, 1]$ is not open in X , but is open in A as

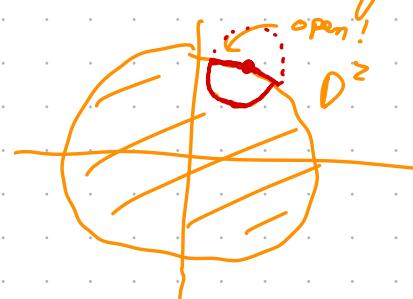
$$(\frac{2}{3}, 1] = [0, 1] \cap (\frac{1}{3}, \frac{2}{3}) \text{ open in } \mathbb{R}$$

Example: The unit sphere. $S^n = \{x \in \mathbb{R}^{n+1} : \sum_i x_i^2 = 1\}$



$$\text{Disk } D^n = \{x \in \mathbb{R}^n : \sum_i x_i^2 \leq 1\}$$

S^n is a topological space wrt subspace topology



Def: Let X, Y be topological spaces. A ~~map~~ $f: X \rightarrow Y$ is continuous if FUNCTION
the inverse image of each open set in Y is an open set in X .
→ compatible w/ metric spaces but more general..

Notation: [we call a cts function a map] (for cases)

Example: • $1_x: X \rightarrow X$ is cts (identity map)

- The inclusion of A into X (where A is given the subspace topology) is cts $f: A \rightarrow X$.
- The function $t \mapsto (\cos(t), \sin(t))$ from \mathbb{R} to \mathbb{R}^2 is cts (Note, will often write this as $t \mapsto e^{it}$ where (x, y) is identified with $x+iy$)
- Compositions of cts functions are cts

Lemma: Let X be a topological space $X = A \cup B$ where A, B are closed subspaces of X . If $f: X \rightarrow Y$ is a function & $f|_A$ & $f|_B$ are both cts, then f itself is continuous.
create new cts from old cts by pasting them together.

Def: $f: X \rightarrow Y$ is a homeomorphism if there is a map $g: Y \rightarrow X$ s.t. $f \circ g = 1_Y$ & $g \circ f = 1_X$. is cts

Trying to understand spaces upto the relation of being homeomorphic
what does it mean for two spaces to be from

Lecture 2

Topology is always upto homeomorphism

3/10/23

Thm (Invariance of Domain, 1910): If \mathbb{R}^n is homeomorphic to \mathbb{R}^m , then $n=m$.
Easy to show there's no linear isomorphism (just linear algebra), homeomorphism is hard.

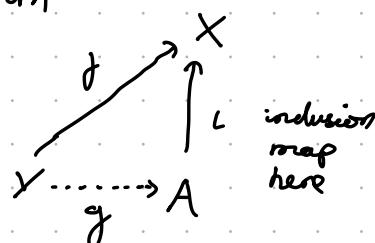
Exercise: \mathbb{R}^1 is not homeomorphic to \mathbb{R}^n for $n > 1$

$\mathbb{R}^2 \quad " \quad " \quad " \quad " \quad " \quad " \quad$ for $n > 2$ [This course]

$\mathbb{R}^3 \quad " \quad " \quad " \quad " \quad " \quad$ for $n > 3$ [Intro to algebraic topology]

Comment about subspace topology: say X, Y are topological spaces. $f: Y \rightarrow X$ is a map taking values in $A \subset X$. Then there is a g with $f = L \circ g$. with respect to the subspace topology, g is continuous.

Prob: EXERCISE



[Different ranges. One mapping to A , one mapping to X]

Def: Let $\{X_j\}_{j \in J}$ be a family of topological spaces. The disjoint union of this family is the topological space w/ underlying set

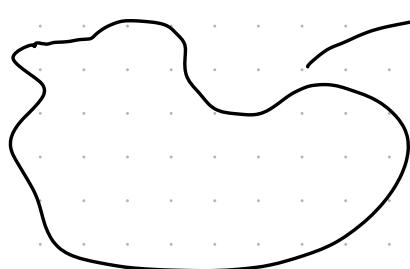
$$\bigsqcup_{j \in J} X_j = \{(x_0, j) : x_0 \in X_j\}$$

where the topology is generated by the basis of sets of the form $U \times \{j\}$ for $j \in J$ (identity set) $\not\subseteq U$ an open set in X_j .

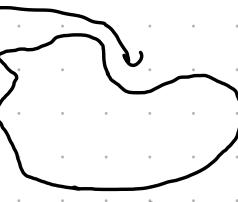
Example Say $j \in \{0, 1\}$. Fix a space X

$$X \sqcup X = (X \times \{0\}) \cup (X \times \{1\})$$

so



$$X = X \cup X$$



$$X \times \{0\}$$

added extra coordinate

$$X \times \{1\}$$

$$X \sqcup X$$

two distinct copies
rather than

Quotient spaces

$$X \cup X = X$$

Recall, an equivalence relation on a set X is a subset $E \subseteq X \times X$ s.t.

- ① For $x \in X$, $(x, x) \in E$
- ② If $(x, y) \in E$, then $(y, x) \in E$
- ③ If $(x, y), (y, z) \in E$, then $(x, z) \in E$

Usually write $x \sim y$, not $(x, y) \in E$. Equivalence relations partition X into equivalence classes. Write $[x] = \{y : x \sim y\}$

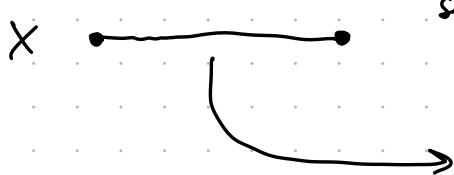
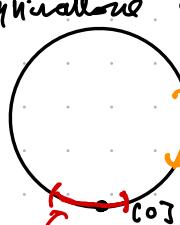
The set of equivalence classes is written X/\sim . The map $q: X \rightarrow X/\sim$ written $q(x) = [x]$ is called the quotient map.

How interact w/ topology?

Def: Let X be a top. space w/ an equivalence relation on the underlying set. The quotient topology X/\sim has open sets, those $V \in X/\sim$ for which $q^{-1}(V) = \{x \in X : q(x) \in V\}$ is open in X .

Example: $X = [0, 1]$. $0 \sim 1$ and $x \sim x$ $\forall x$

so equivalence classes are $\{0, 1\}$ & $\{x\}_{x \in (0, 1)}$



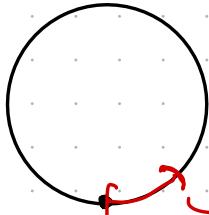
X/\sim which sets in X/\sim are open?
open interval, inverse image open
so open.

The inverse image is

two open intervals
open int $\neq X$ so open.

Getting the topology we expect!

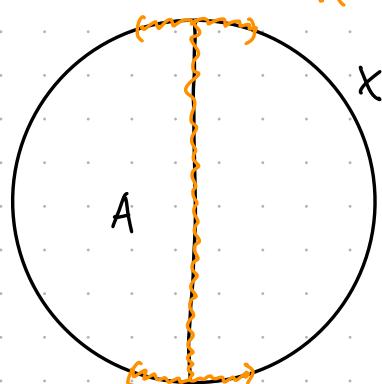
what about



contains this singleton \in of the equivalence relation

We get the topology we expect from the circle by closing this connection w/ the equivalence relation on a line!

Example: Can generalise the above. Say $A \subset X$, define an equivalence relation so that any two pts equivalent. $a_0 \sim a_1$ for $a_0, a_1 \in A$ and $x \sim x$ for any $x \in X$. Equivalence classes here are singletons & the set A .

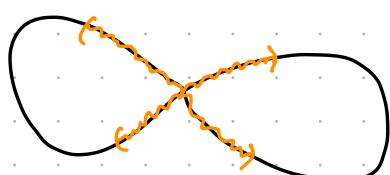


$$X = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(0, y) : -1 \leq y \leq 1\}$$

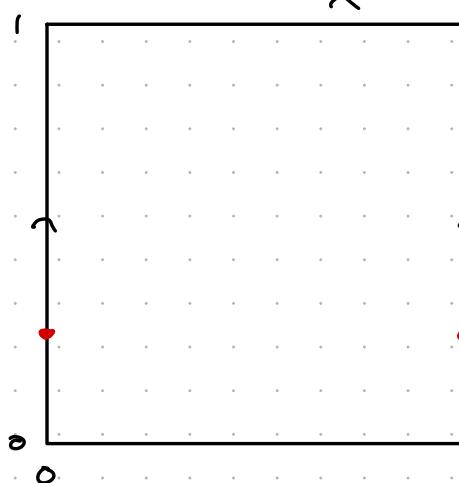
X is a unit circle, A is a segment of the circle

quotient map

X/\sim

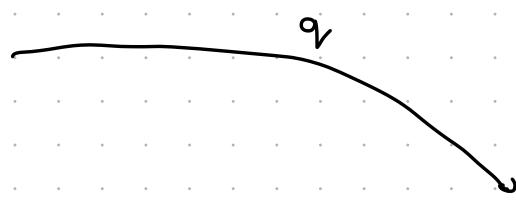


Example: $X = \{(x, y) : 0 \leq x, y \leq 1\}$



$(x, y) \sim (x', y')$ ← equivalence class, cardinality 1

$(0, y) \sim (1, y)$ ← equivalence class, cardinality 2



cylinder

X/\sim

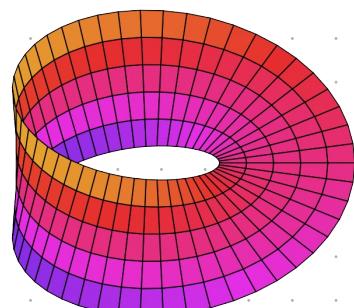
Möbius strip

X

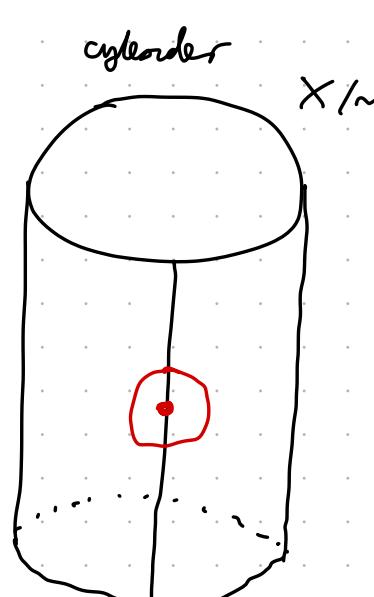
$(x, y) \sim (x, y)$

$(0, y) \sim (1, 1-y)$

q

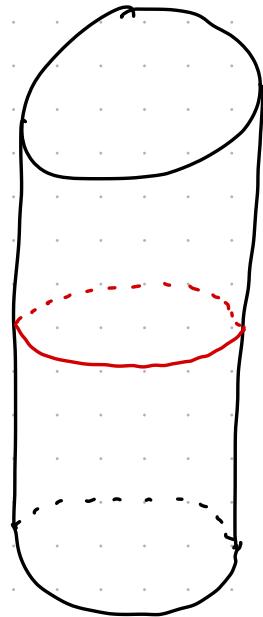


X/\sim



$X \cong Y$ homeomorphic is one interesting relation in topology. There is another (looser one) (homotopy). weaker. will build up to the definition of this weaker relationship than homeomorphism.

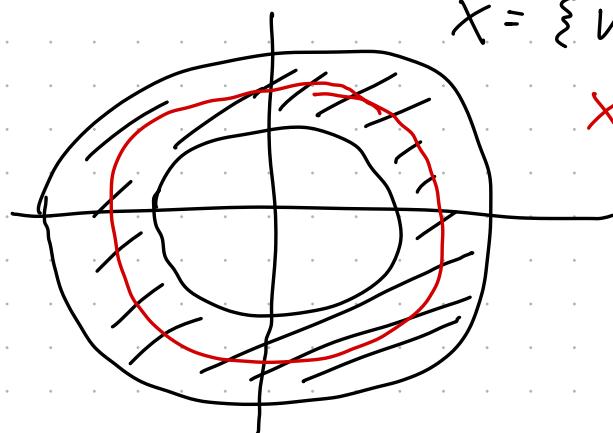
Example:



Let X be the cylinder.

Let A be the circle inside the cylinder.

Instead, let's switch models



$$X = \{v \in \mathbb{R}^2 : \frac{1}{2} \leq \|v\| \leq \frac{3}{2}\}$$

$$X = \{v \in \mathbb{R}^2 : \|v\| = 1\}$$

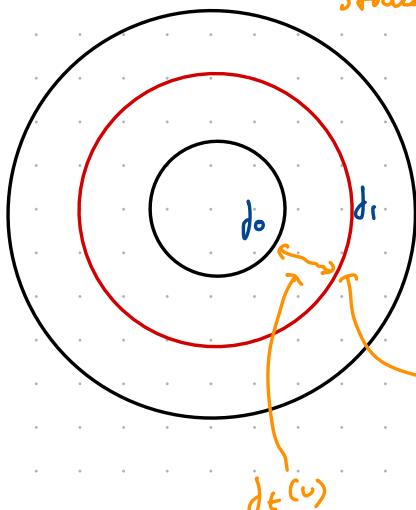
Def: we say a topological space $A \subset X$ is a retract of X if there is a map $r: X \rightarrow A$ with $r|_A = \text{Id}_A$

Example: There is a retraction $r: X \rightarrow A$, $r(v) = \frac{v}{\|v\|}$ "some shape"
 you can get your hands on this

Def: $A \subset X$ is a deformation retract of X if there exists a parameter family of functions $f_t: X \rightarrow X$, $t \in [0, 1] = I$ such that

$$f_0 = \text{Id}_X, \quad f_1(x) = A, \quad f_t|_A = \text{Id}_A$$

Example: $f_t(v) = (1-t)v + t \frac{v}{\|v\|}$ straight line $\xrightarrow{\text{if the map } X \times I \rightarrow X \text{ is cts}}$ $(x, t) \mapsto f_t(x)$

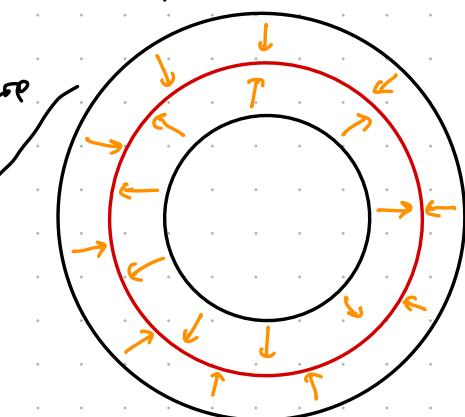


The circle is a deformation retract of the circle

$$f_1 = \text{Id}_A$$

identity map on A

"circle & annulus have something in common. Deeper than homeomorphism = retractions."



$$f_t(x) = F(x, t) \text{ where ...}$$

The map

$$\begin{array}{ccc} X & \xrightarrow{d} & X \\ & \searrow r & \swarrow \\ & A & \end{array}$$

$$\text{Define } r(x) = f_1(x)$$

$$r: X \rightarrow A$$

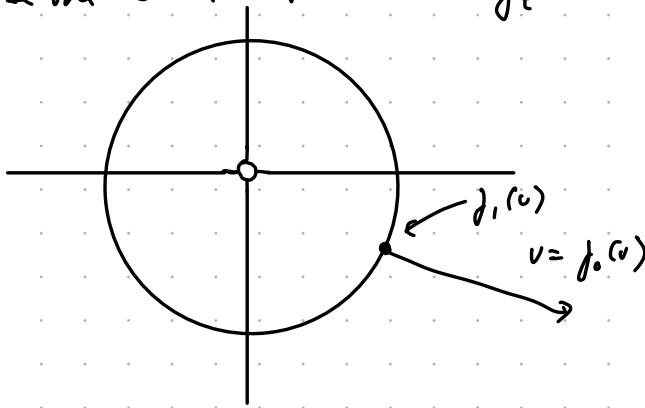
r is cts wrt subspace topology on X

→ conclude, $r: X \rightarrow A \rightarrow q$

homeomorphism = retractions.

Example: S^{n-1} is a deformation retract of $\mathbb{R}^n / \{\mathbf{0}\}$

use the Seifert formula: $f_t(v) = (1-t)v + t \frac{v}{\|v\|}$



will use these families of maps to define what a homotopy is

Example $\{\mathbf{pt}\}$, say $\{\mathbf{0}\}$ is a deformation contraction of \mathbb{R}^n

Pf: give f_t . $f_t(v) = (1-t)v$

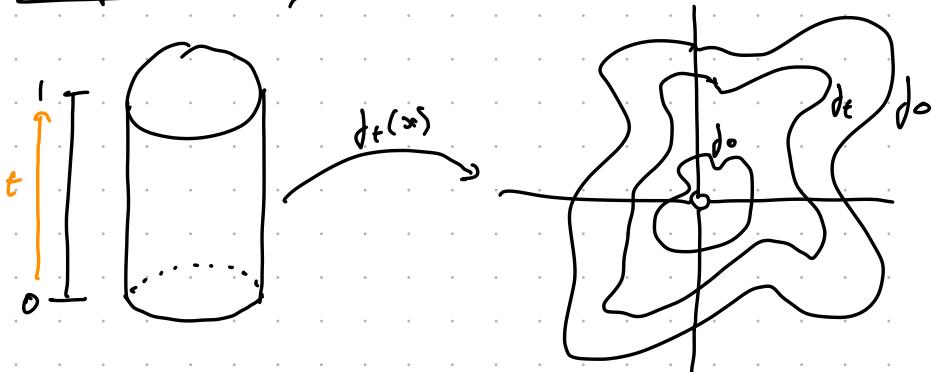
Homotopy

family of maps
 $f_t(x) = F(x, t)$

$I = [0, 1]$

Def: Let X & Y be topological spaces. A map $F: X \times I \rightarrow Y$ is called a homotopy. If $F(x, t) = f_t(x)$, then F is a homotopy from f_0 to f_1 . Two maps f_0, f_1 are homotopic if there exists a homotopy F s.t. $f_0 = f_1$ & $f_1 = f_0$.

Example: $X = S$, $Y = \mathbb{R}^2 / \{\mathbf{0}\}$

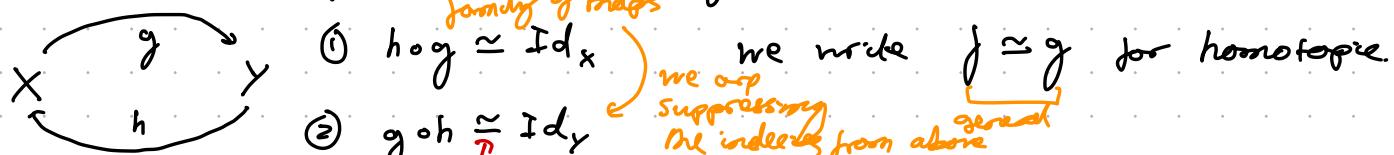


continuous deformation

we say the maps are homotopic...
↓
next topic!

Higher level of abstraction...

Definition: Let X & Y be topological spaces. We say that X is homotopy equivalent to Y if there are maps $g: X \rightarrow Y$ and $h: Y \rightarrow X$ s.t.



- ① $h \circ g \simeq \text{Id}_X$
- ② $g \circ h \simeq \text{Id}_Y$

NOT equals, but a homotopy (family of maps) exists.

we write $f \simeq g$ for homotopic

supposing the indices from above agree

Proposition: If A is a deformation retract of X , then A & X are homotopy equivalent.

Proof:

Consider the inclusions l & r retraction r

Show that $r \circ l = \text{Id}_A$, $l \circ r = \text{Id}_X$

$$l \circ r = f_0 = \text{Id}_X$$

Lecture 4

week 2

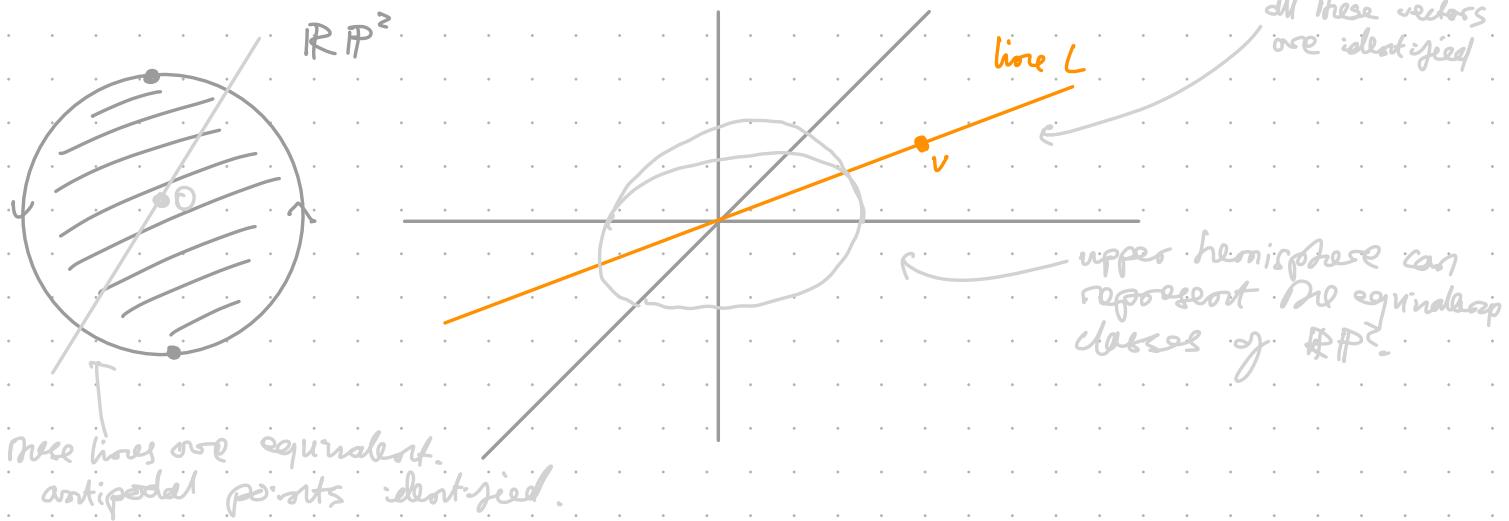
9/10/23

Examples of Topological spaces

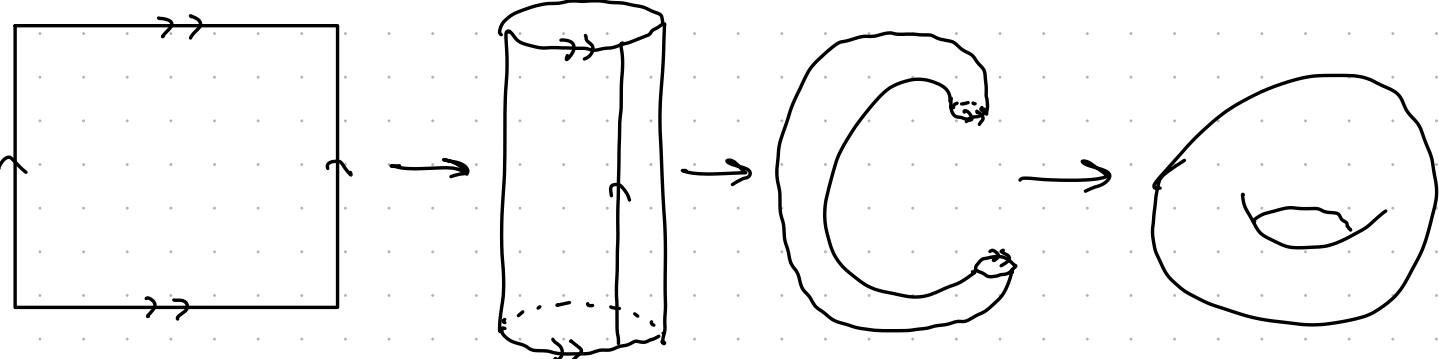
① $\mathbb{R}\mathbb{P}^n = \mathbb{R}^{n+1} - \{0\}$ / $v \sim rv$ for $r \in \mathbb{R} \setminus \{0\}$

" $\mathbb{R}\mathbb{P}^n$ " is the space of lines in $\mathbb{R}^{n+1} =$

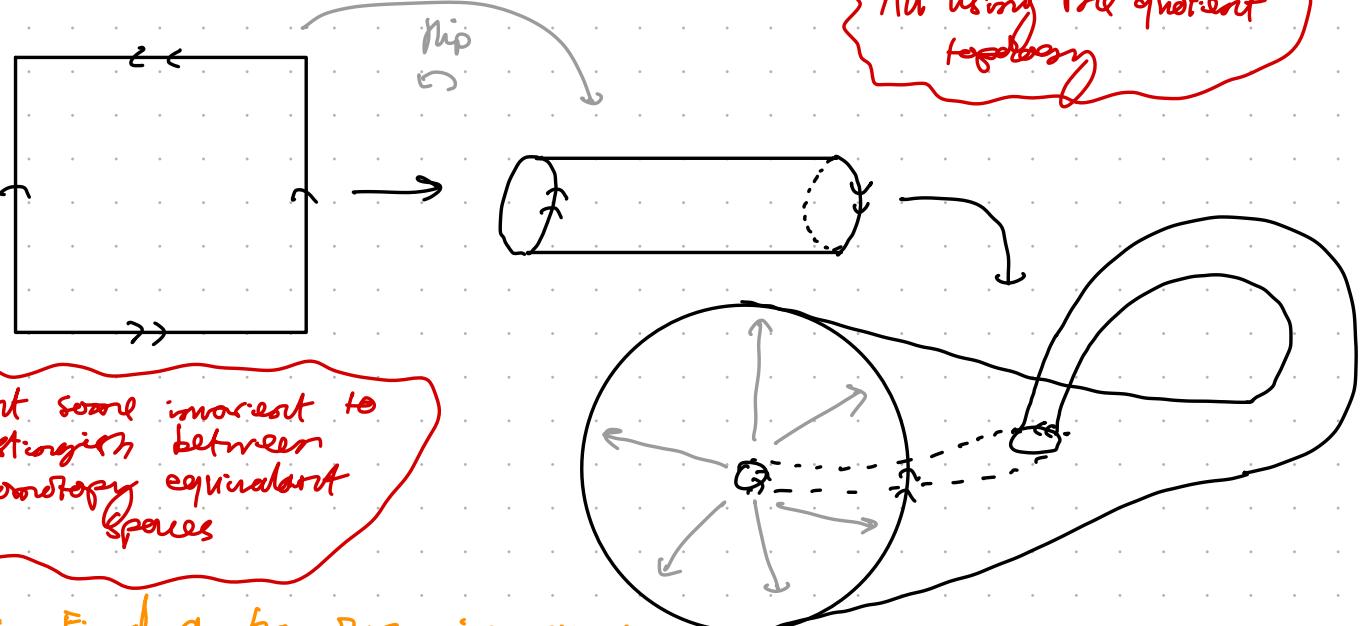
real projective space



② Torus



③ Klein Bottle



Task: Find a homotopy invariant property of a topological space X . This will be a group we can attach to a space. we will consider loops in X where a loop has form

$f: [0, 1] \rightarrow X$ with $f(0) = f(1)$

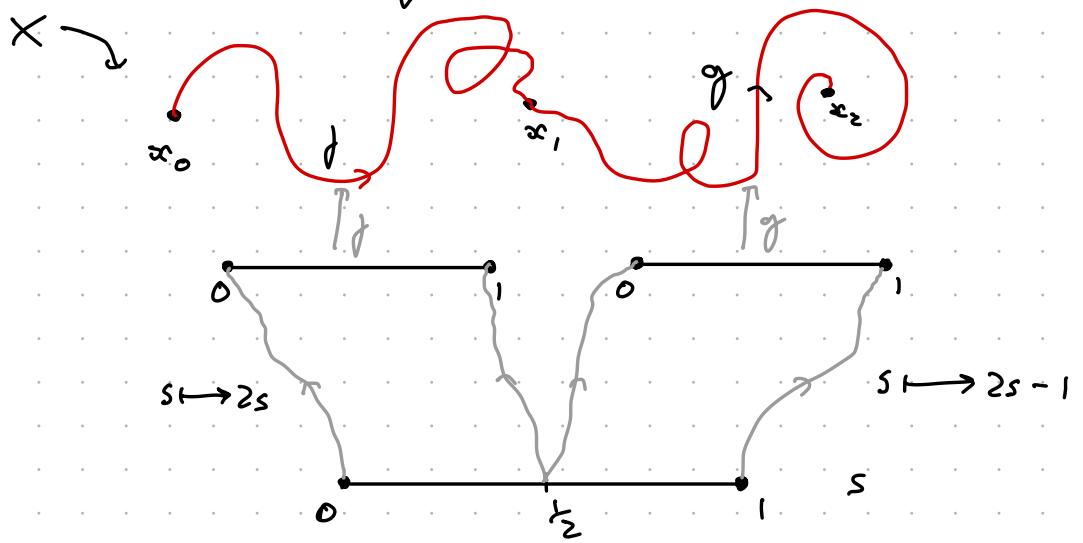
will describe algebraic structure of the group & will calculate examples. next meet...

easier to define maps from to show they don't exist

we want an operation on paths (loops will be a special case)

Concatenation

Say $f, g: I \rightarrow X$ are paths (cls from $[0, 1] \rightarrow X$) with special property that $f(1) = g(0)$. Want to define the concatenation $f \cdot g$ of f and g . In pictures:



definition of concatenation

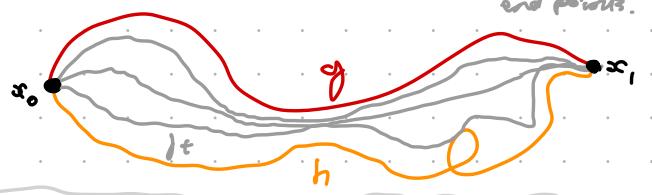
$$f \cdot g(s) = \begin{cases} f(2s) & 0 \leq s \leq \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \leq s \leq 1 \end{cases}$$

Note: $f \cdot g: [0, 1] \rightarrow X$ is continuous by the pasting lemma.

we're interested in homotopy classes of paths & loops.

homotopy for paths

for points $x_0, x_1 \in X$, consider paths $g, h: I \rightarrow X$ satisfying $g(0) = h(0) = x_0$ and $g(1) = h(1) = x_1$. We say g & h are homotopic relative to the end points if there is a homotopy $g_t: [0, 1] \rightarrow X$ with $g_0 = g$, $g_1 = h$ and $g_t(0) = x_0$ and $g_t(1) = x_1$.



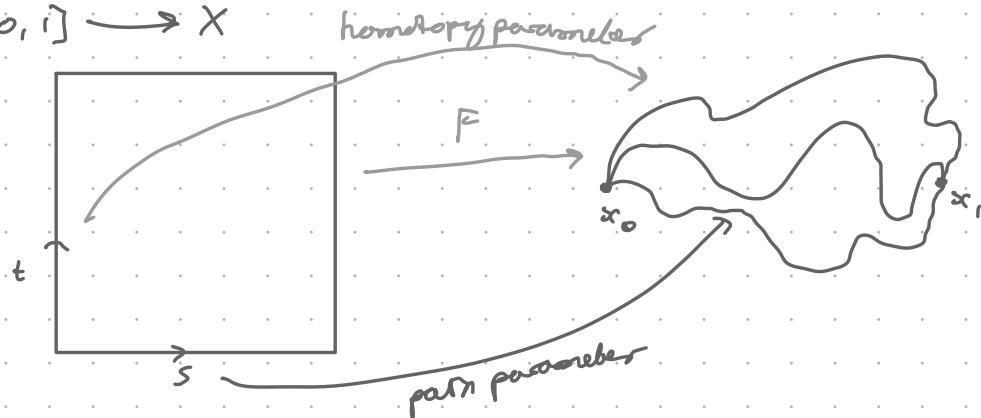
Paths are homotopic relative to fixed endpoints.

family of maps.

Lemma: Given $x_0, x_1 \in X$, the relation of homotopy rel. end points is an equivalence relation on the set of maps $f: [0, 1] \rightarrow X$ w/ $f(0) = x_0, f(1) = x_1$.

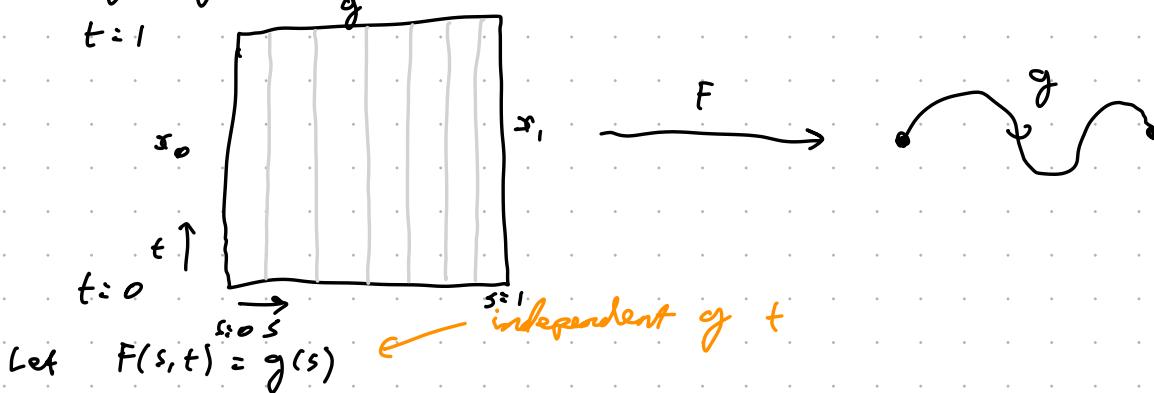
Remark: In the def, $f_t(s)$ is cts in both variables, hence

$$F: [0, 1] \times [0, 1] \rightarrow X$$

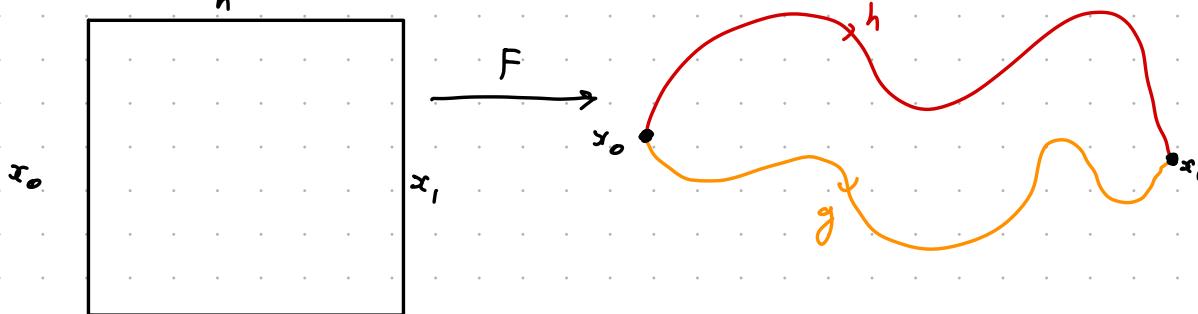


Proof: Need to show 3 things:

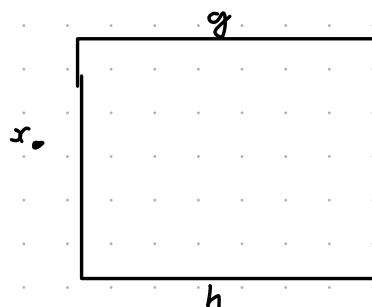
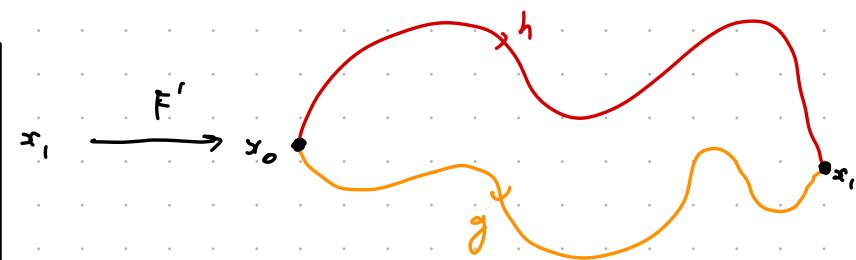
$$\textcircled{1} \quad g \simeq g \text{ rel } \partial \text{ (boundary)}$$



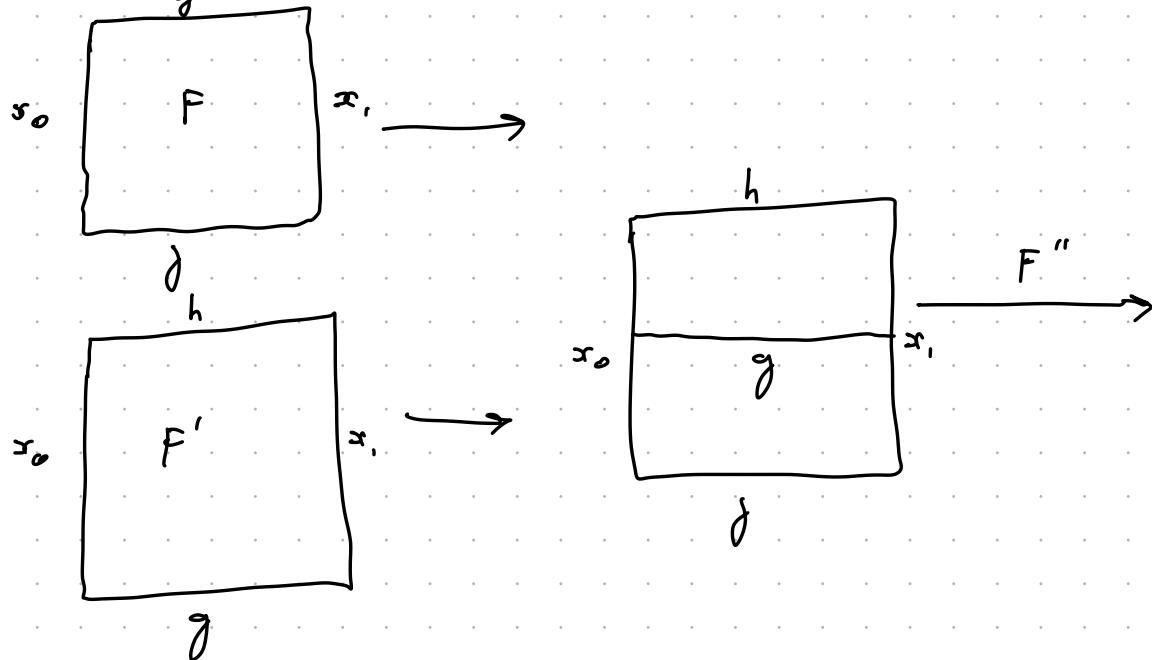
$$\textcircled{2} \quad \text{If } g \simeq h \text{ then } h \simeq g$$



$$\text{Define } F'(s, t) = f(s, 1-t)$$



③ say $j \simeq g$, $g \simeq h$ then $j \simeq h$ (rel. ∂)

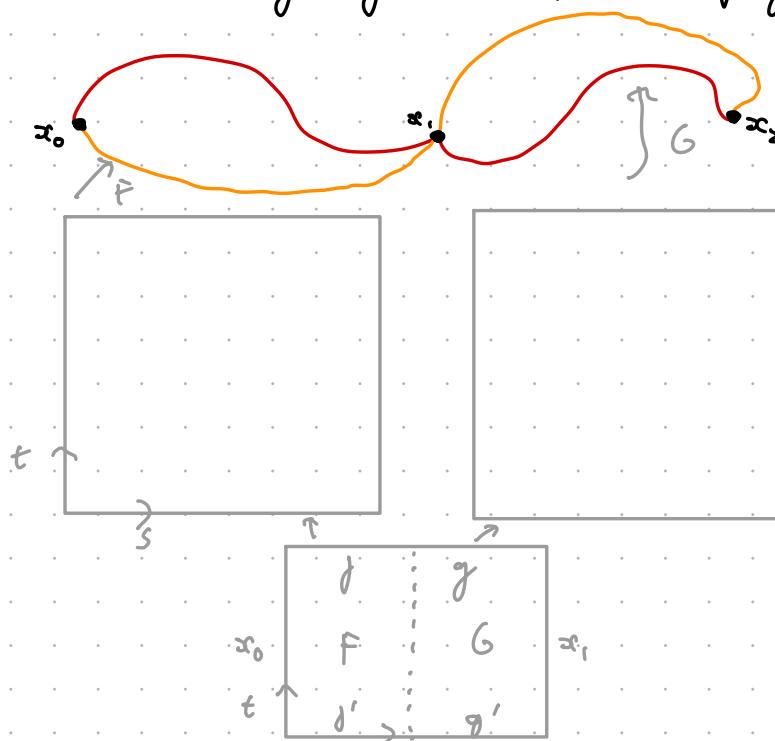


$$F''(s, t) = \begin{cases} F(s, 2t) \\ F'(s, 2t-1) \end{cases}$$

Homotopy rel ∂ is an equivalence relation on paths. 10/10/23

Lemma: Say j, j' are paths with $j(0) = j'(0) = x_0$, $j(1) = j'(1) = x_1$, g, g' paths with $g(0) = g'(0) = x_1$, $g(1) = g'(1) = x_2$. If $j \simeq j'$ rel ∂ and $g \simeq g'$ rel. ∂ , then $j \cdot g \simeq j' \cdot g'$ rel ∂ .

Proof:



$j \simeq j'$ rel ∂ gives a map $F: [0, 1] \times [0, 1] \rightarrow X$

$g \simeq g'$ rel ∂ gives a map $G: I \times I \rightarrow X$

Define

$$H(s, t) = \begin{cases} F(2s, t) & 0 \leq s \leq \frac{1}{2} \\ G(2s-1, t) & \frac{1}{2} \leq s \leq 1 \end{cases}$$

H is obtained by the pasting lemma

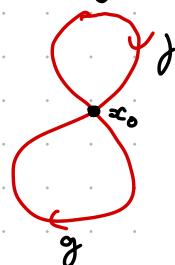
Can think of concatenation as an operation on homotopy classes

If we have paths f, g with $f(1) = g(0)$, then we can define the operation of concatenation of homotopy classes by setting

$$[f] \cdot [g] = [f \cdot g]$$

$[h]$ means a homotopy class of g

well defined as a homotopy class



Def: Let X be a topological space. $x_0 \in X$, let $\Pi(X, x_0)$ denote the set of homotopy classes of loops based at x_0 . i.e. paths f with $f(0) = f(1) = x_0$. The operation of concatenation gives a "multiplication" on $\Pi(X, x_0)$.

Def: $\Pi_1(X, x_0)$ is the fundamental group of X .

Proposition: $\Pi_1(X, x_0)$ is a group wrt concatenation

Note: all loops are arbitrary, they can cross, hit x_0 again etc...

other cool stuff
for Π_2, Π_3 etc...

Think of Π_1 as maps of circles into our space. Π_n is spheres, higher analogue.

Proof: we need to show the existence of an identity, inverses & associativity.

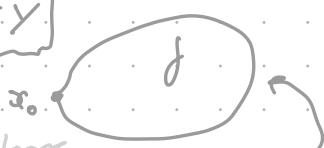
Observations:

giving us a nice algebraic structure on this set - homotopy is good!

- ① All of these require the consideration of homotopy classes.
- ② Each of these properties has a version for paths (talking about loops abn), in terms of the proof, we will prove the case of the path & apply to loops. Loops \subset paths so applies. will use these properties for paths to analyse res. between fundamental group at different pts, $\Pi_1(X, x_0) \& \Pi_1(X, x_1)$

① Let $e_0: [0, 1] \rightarrow X$ be the constant path, $e_0(s) = x_0$. It does exist!

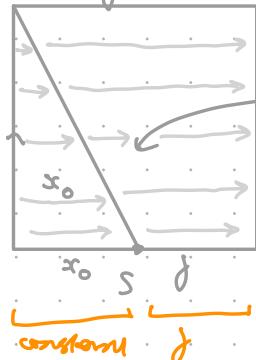
IDENTITY



Claim: $e_0 \cdot f = f$
 $f \cdot e_0 = f$

$\{e_0\}$ is a left identity for f
 $\{e_1\}$ is a right identity for f

pt:



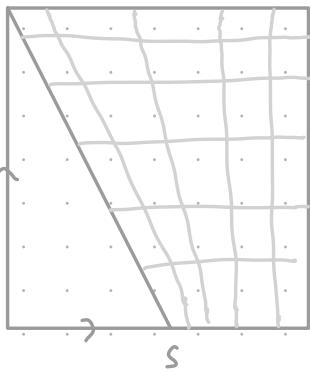
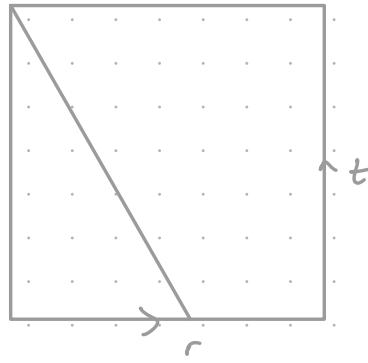
concatenation

$t=0$ gives $e_0 \cdot f$
 $t=1$ gives f

This is $s = \frac{1-t}{2}$ traverses f for longer & longer
 $t=0, s=x_0$

topologists
don't like writing maps!

will write map here for novelty's sake...



required to do homotopies
 \because the boundary ∂ is fixed

$$s = (1-r) \frac{1-t}{2} + r$$

$$G(r, t) = \left((1-r) \left(\frac{1-t}{2} \right) + r \cdot 1, t \right)$$

$r=0, r=1$ to parametrise the line

To find G^{-1} , we write $G(r, t) = (s, t)$ & solve for r as $r(s)$

$$r(s) =$$

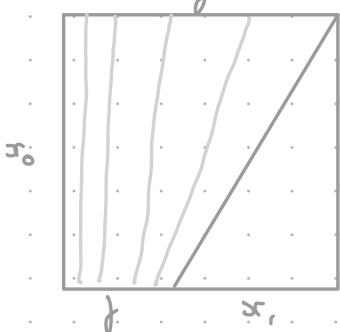
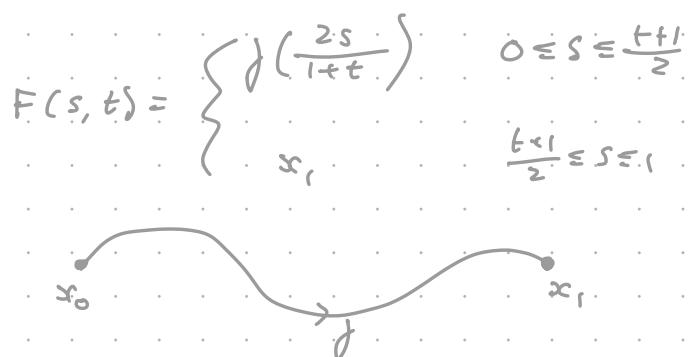
$$G^{-1}(s, t) = \left(\frac{2s + t - 1}{t+1}, t \right) \quad s = \frac{1}{2}$$

so define homotopy F by

$$F(s, t) = \begin{cases} x_0, & 0 \leq s \leq \frac{1-t}{2} \\ \delta \left(\frac{2s + t - 1}{t+1} \right), & \frac{1-t}{2} \leq s \leq 1 \end{cases}$$

\uparrow G^{-1} then
 project onto
 r plane
 then apply

To show $\delta \cdot e_0 = \delta$ Do the same:



This fundamental group comes from the homotopy classes.

we've shown: $e_0 \cdot \delta \simeq \delta \simeq \delta \cdot e_1$ rel ∂

\hookrightarrow for the loop case, e_0 is a 2-sided identity

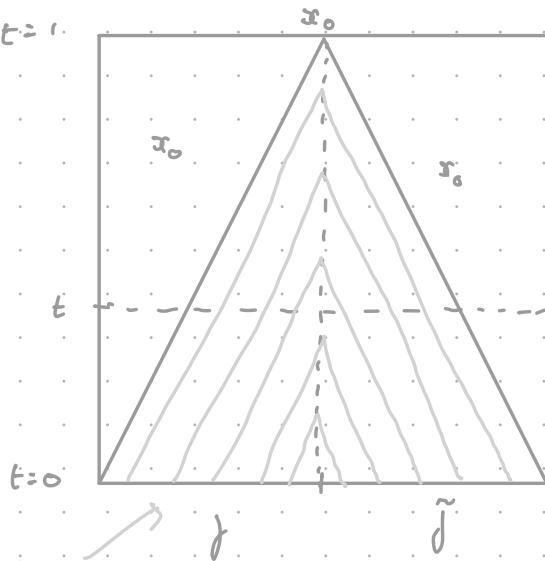
\hookrightarrow for paths, we have a left identity & a right identity, not equal.

② (Inverses)

Let δ be a path from x_0 to x_1 . let $\tilde{\delta}(s) = \delta(1-s)$. claim: $\delta \cdot \tilde{\delta} = e_0$, $\tilde{\delta} \cdot \delta = e_1$ [loop case, $e_0 = e_1$]

To show $[\delta \cdot \tilde{\delta}] = [e_0]$, we show $\delta \cdot \tilde{\delta} \simeq e_0$ rel ∂

so, we construct a map $F: I \times I \rightarrow X$



level sets
of map

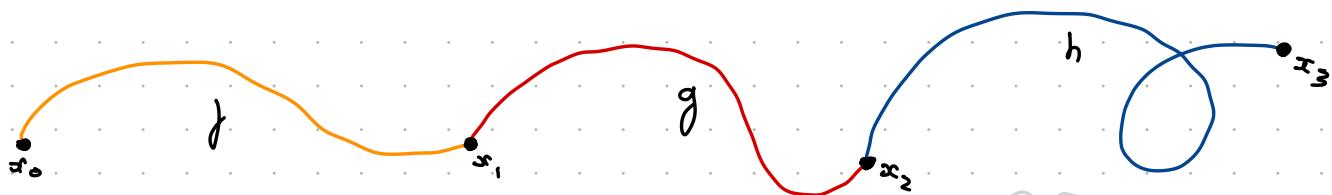
constant map

- t is our homotopy parameter
↳ fix t & we get a particular map
- start at x_0 , move along line, then go back to x_0 & wait longer till done.

$$F(s, t) = \begin{cases} x_0 & 0 \leq s \leq \frac{t}{2} \text{ or} \\ j(2s-t) & \frac{t}{2} \leq s \leq \frac{1}{2} \\ \tilde{j}(2s+t-1) & \frac{1}{2} \leq s \leq \frac{1-t}{2} \\ x_0 & 1 - \frac{t}{2} \leq s \leq 1 \end{cases}$$

homotopy from $x_0 \rightarrow x_1$ & all the way back
vs just staying at x_0 + everything in between

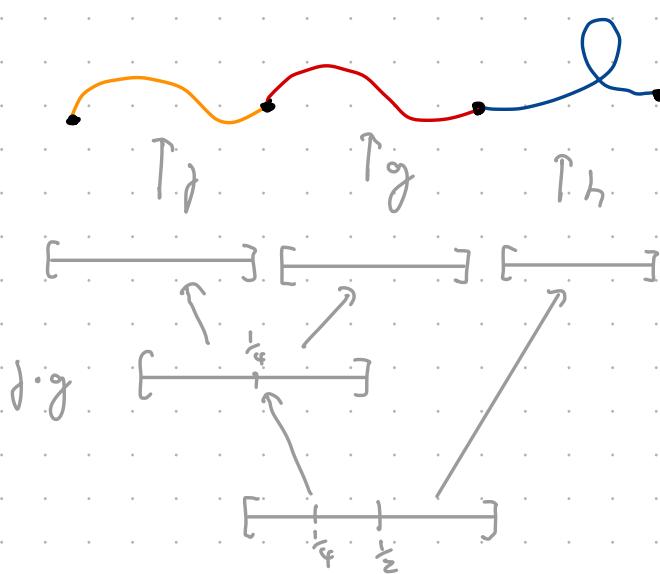
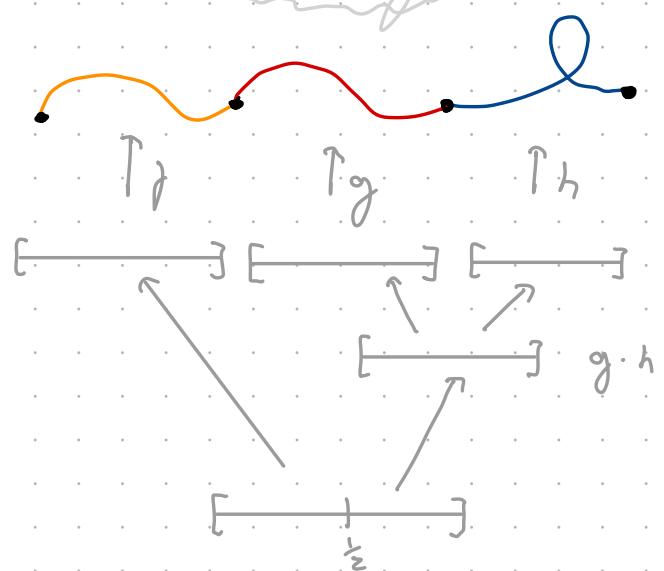
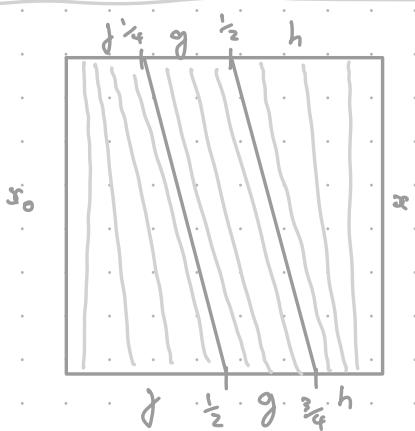
③ (Associativity) Assuming j, g, h paths



claim: $[(j \cdot g) \cdot h] = [j \cdot (g \cdot h)]$

What's the difference?

The difference is
that they are
parametrised
differently



$$F(s, t) = \begin{cases} j\left(\frac{4s}{2-t}\right) & 0 \leq s \leq \frac{2t}{4} \\ g\left(4s-2+t\right) & \frac{2t}{4} \leq s \leq \frac{3-t}{4} \\ h\left(\frac{4s-3+t}{1-t}\right) & \frac{3-t}{4} \leq s \leq 1 \end{cases}$$

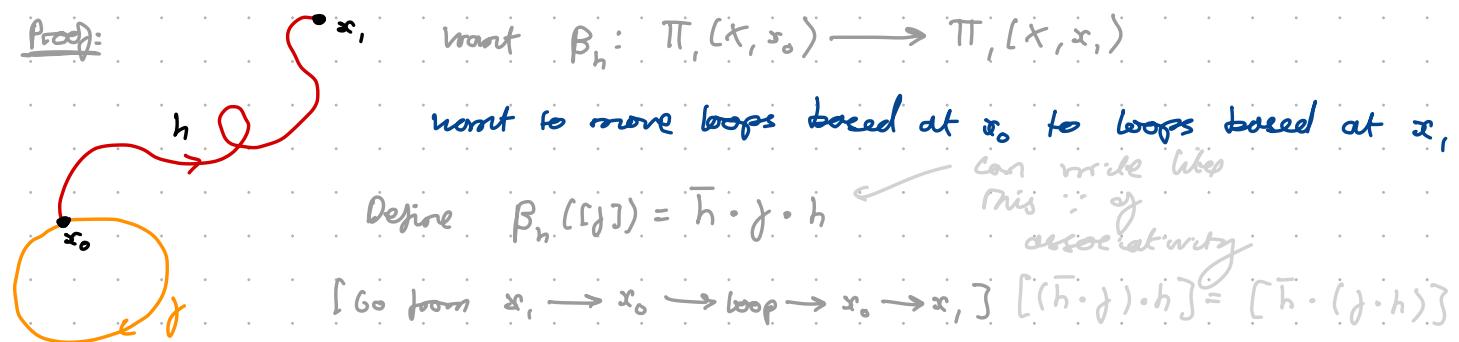
Building up more formal properties, we'll appreciate later...

Def: X is ^{top. space} path connected if for any pair of points $x_0, x_1 \in X$, there is a path from x_0 to x_1 .

Say $x_0, x_1 \in X$ and X is path connected. Q: what is the relation between $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ fundamental group w/ different base points...

Prop: Say that $h: [0, 1] \rightarrow X$ is a path from x_0 to x_1 , then h determines an isomorphism from $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$. Once you've chosen h , iso class fixed.

Proof:



\bar{h} goes back... B_h is a bijection from $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$

claims that $B_{\bar{h}}$ is an inverse for B_h

$$\begin{aligned} (B_{\bar{h}} \circ B_h)([j]) &= [\bar{h} \cdot (\bar{h} \cdot j \cdot h) \cdot \bar{h}] \\ &= [(h \cdot \bar{h}) \cdot j \cdot (h \cdot \bar{h})] \\ &= [e_0 \cdot j \cdot e_0] \\ &= [j] \end{aligned}$$

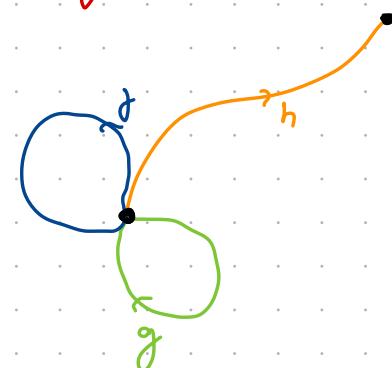
use the fact
that $\bar{\bar{h}} = h$

shown:
 $B_h \circ B_{\bar{h}} = \text{Id}$
 $B_{\bar{h}} \circ B_h = \text{Id}$

\Downarrow
 B_h bijection

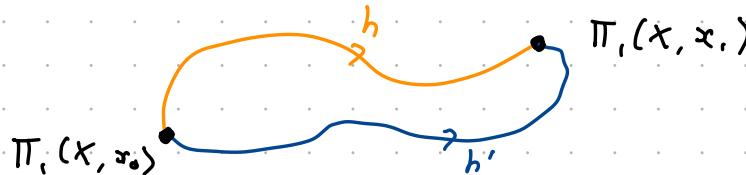
Claim: B_h is a group homomorphism

$$\begin{aligned} B_h([j] \cdot [g]) &= [\bar{h} \cdot (j \cdot g) \cdot h] \\ &= [\bar{h} \cdot j \cdot h \cdot \bar{h} \cdot g \cdot h] \\ &= [B_h([j]) \cdot B_h([g])] \end{aligned}$$



$\Rightarrow B_h$ is a group isomorphism

Does the isomorphism B_h depend on h ? Answer: Yes in general it does



If $\pi_1(X, x_0)$ is abelian, then the isomorphism is independent of the choice of path.

$\pi_1(S^1, x_0) = \mathbb{Z} \rightarrow$ can ignore base point

$\pi_1(\text{ klein bottle, } x_0)$ is not abelian \Rightarrow cannot ignore base point.

Lecture ?

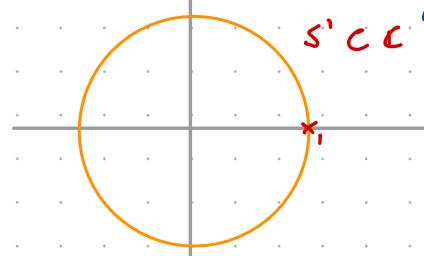
16/10/23

new subject so
still learning how
to teach it!

• Show that $\pi_1(X, x_0)$ is a group

• WTS that $\pi_1(S^1, 1) = \mathbb{Z}$

\hookrightarrow will take a while to prove...



• will define a function $\Phi: \mathbb{Z} \rightarrow \pi_1(S^1, 1)$

\hookrightarrow given $n \in \mathbb{Z}$, define $w_n: I \rightarrow S^1$ by $w_n(s) = e^{2\pi i s}$

\hookrightarrow This is a path! $w_n(0) = e^0 = 1$, $w_n(1) = e^{2\pi i} = 1$

\hookrightarrow This is a loop based at 1

\hookrightarrow homotopy class $\Phi(n) = [w_n] \in \pi_1(S^1, 1)$

$p^{-1}(1) = \mathbb{Z}$

• Let's write $p_\infty: \mathbb{R} \rightarrow S^1$ given by $p_\infty(s) = e^{2\pi i s}$

The helix is the set of parameters

$$(\cos(2\pi s), \sin(2\pi s), s) \subset \mathbb{R}^3$$

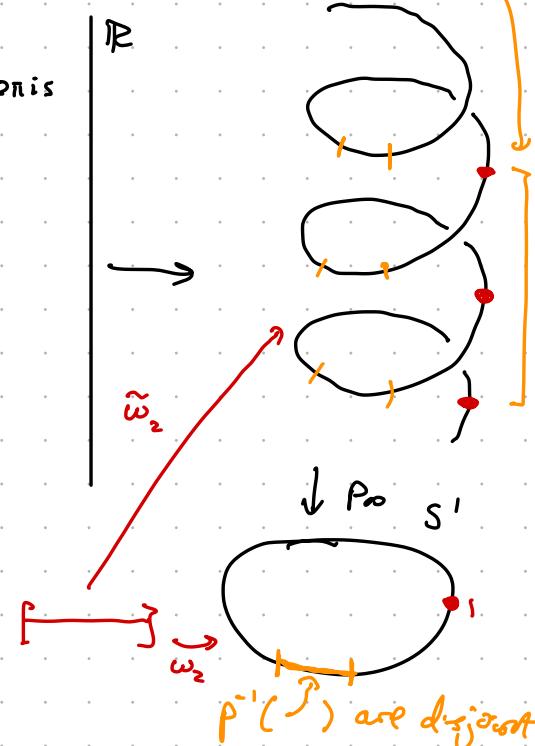
$\rightarrow p_\infty: \mathbb{R} \rightarrow S^1$ is a covering space.

Def: Let $p: \tilde{X} \rightarrow X$. A open set $U \subset X$ is evenly covered if $p^{-1}(U)$ is a disjoint union of open sets \tilde{U}_j s.t. $p|_{\tilde{U}_j}$ is a homeomorphism.

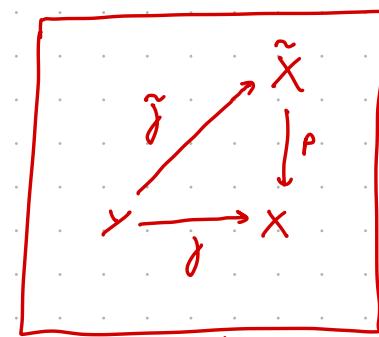
\hookrightarrow every pt

The map p is a covering map if X has a covering by evenly covered sets U .

The triple $p: \tilde{X} \rightarrow X$ is a covering space



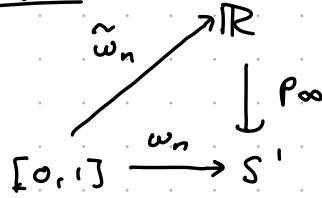
Def: Given a covering $p: \tilde{X} \rightarrow X$ and a map $f: Y \rightarrow X$, a lift of f is a map \tilde{f} so that $p \circ \tilde{f} = f$



Example: Define $\tilde{w}_n: [0, 1] \rightarrow \mathbb{R}$ by $\tilde{w}_n(s) = ns$. Then $p_\infty(\tilde{w}_n(s)) = e^{2\pi i ns} = w_n(s)$

A lift diagram

Diagram:



Interpretation of $\tilde{w}_n(s)$ for $s \in [0, 1]$ is trajectory
trace of the "total # of turns" of the path w on
interval $[0, s_0]$. w is the actual point.

check later!

w are loops
 \tilde{w} are paths

right way around...

184 Propositions

Prop: $\Phi: \mathbb{Z} \rightarrow \mathbb{H}, (\delta', \cdot)$ is a homomorphism

Proof: WTS $\Phi(n+m) = \Phi(n) \cdot \Phi(m)$

↳ concretely, $[\tilde{w}_{n+m}] = [\tilde{w}_n] \cdot [\tilde{w}_m] = [\tilde{w}_n \cdot \tilde{w}_m]$

loop w/ homotopy
class rel. 2

WTS same homotopy class $(*) \& (**) \rightarrow$
↳ need to construct an explicit
homotopy between these two paths...

Need to construct a homotopy $j_t(s)$ w/
 $j_0(s) = \tilde{w}_{n+m}(s)$, $j_1(s) = \tilde{w}_n \cdot \tilde{w}_m(s)$

Idea: do this on the line \mathbb{R} , not the circle: it has advantages! want
lifts of these paths \tilde{w}_{n+m} and $\tilde{w}_n \cdot \tilde{w}_m$ to \mathbb{R} ?

lifted our loops
to paths.

we have \tilde{w}_{n+m} which lifts w_{n+m} . we need a lift of $w_n \cdot w_m$:
what about $\tilde{w}_n \cdot \tilde{w}_m$ [concatenate the lifts of both]

But paths can't
be concatenated
endpts don't
match

Let $\tau_n: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$\tau_n(r) = n + r$$

just \mathbb{Z} translations



claim: $\tau_n \circ \tilde{w}_m$ is a lift of w_m .

Proof: $p_\infty(\tau_n \circ \tilde{w}_m(s)) = p_\infty(m \cdot s + n) = \exp(2\pi i(m \cdot s + n))$

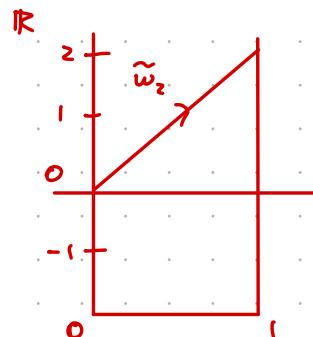
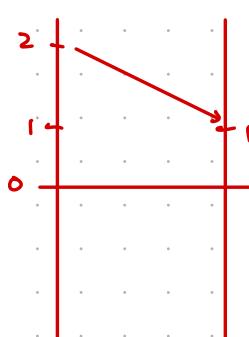
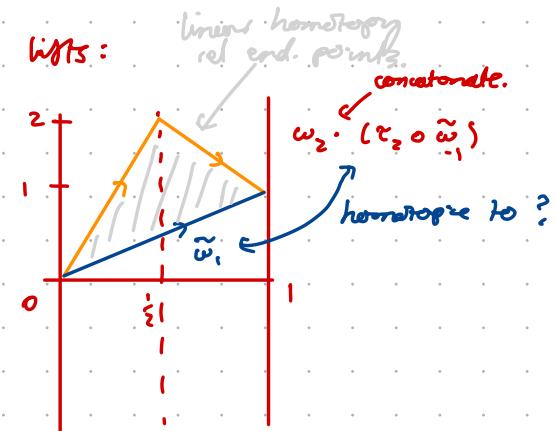
$$= \exp(2\pi i m \cdot s) \exp(2\pi i n)$$

$$= \exp(2\pi i m \cdot s) = w_m(s)$$

integer shift
so no rotation

claim: $\tilde{w}_n \cdot (\tau_n \circ \tilde{w}_m)$ is a lift of $w_n \cdot w_m$

Example: Take $n=2$, $m=1$. Draw the graphs of our lifts:



linear homotopy
rel. end. points.

concatenate.

$w_2 \cdot (\tau_2 \circ \tilde{w}_1)$

homotope to?

$$\Phi: \mathbb{Z} \rightarrow \pi_1(S', 1) \quad \Phi(n) = \omega_n$$

Showing Φ is a homomorphism,
specifically $\omega_n \cdot \omega_m \simeq \omega_{n+m}$ rel ∂

claim: we have a list of $\omega_n \cdot \omega_m$
given by $\tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m)$

P2:

$$\textcircled{1} \quad \tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m)(0) = \tilde{\omega}_m(0) = 0$$

$$\text{Recall: } \tilde{\omega}_{m+n}(0) = 0 \quad \tilde{\omega}_{m+n}(1) = m+n$$

$$\textcircled{2} \quad \text{Lemma: say } g, h: I \rightarrow X, \quad j: X \rightarrow Y$$

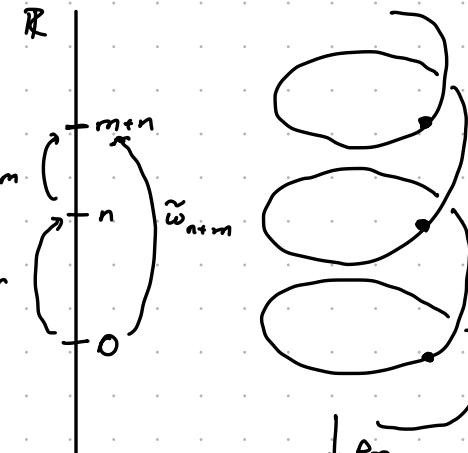
$$\text{Then } j \circ (g \circ h) = (j \circ g) \cdot (j \circ h)$$

Proof: say $0 \leq s \leq \frac{1}{2}$ \leftarrow LHS

$$\text{Then } (j \circ g) \cdot (j \circ h)(s) = j \circ g(2s)$$

say $\frac{1}{2} \leq s \leq 1$ \leftarrow RHS

$$(j \circ g) \cdot (j \circ h)(s) = j \circ h(2s-1)$$



This is the formula for

$$(j \circ g) \cdot (j \circ h)$$

so done.

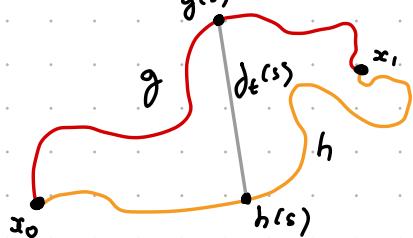
$$\textcircled{3} \quad \tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m) \text{ is a lift of } \omega_n \cdot \omega_m \quad p_\infty \text{ does nothing to } \tau_n$$

$$p_\infty(\tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m)) = p_\infty(\tilde{\omega}_n) \cdot p_\infty(\tau_n \circ \tilde{\omega}_m) = \omega_n \cdot \omega_m$$

Linear Homotopies

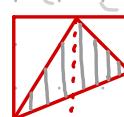
Picture in \mathbb{R}^2 . Define

$$j_t(s) = (1-t)g(s) + th(s)$$

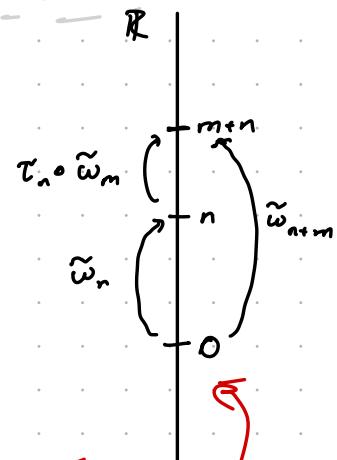


$$\text{Note: } j_0(s) = g(s), \quad j_1(s) = h(s)$$

$$j_t(0) = x_0, \quad j_t(1) = x_1$$



These are the linear homotopies.



$$\text{Def: } \tilde{j}_t(s) = (1-t)\tilde{\omega}_{n+m} + t\tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m)$$

Homotopy 'upstairs'
fixing endpoints.

$$\text{Set } j_t(s) = p_\infty(\tilde{j}_t(s)) \quad \text{Build a homotopy 'downstairs'
just by pushing this down to } S'$$

what we
wanted to
show.

$$\textcircled{1} \quad j_0(s) = p_\infty \circ \tilde{j}_0(s) = p_\infty(\tilde{\omega}_{n+m}) = \omega_{n+m}$$

$$\textcircled{2} \quad j_1(s) = p_\infty \circ \tilde{j}_1(s) = p_\infty(\tilde{\omega}_n \cdot (\tau_n \circ \tilde{\omega}_m)) = \omega_n \cdot \omega_m$$

$$\textcircled{3} \quad j_t(0) = p_\infty \circ \tilde{j}_t(0) = p_\infty(0) = 1$$

$$\textcircled{4} \quad j_t(1) = p_\infty \circ \tilde{j}_t(1) = p_\infty(m+n) = 1$$

] homotopy

] homotopy rel.
endpoints

Prop: $\Phi: \mathbb{Z} \rightarrow \pi_1(S^1, 1)$ is surjective.

We've learnt: It's easier to reduce the problem to a vector space (IF)

Proof: Let $\gamma: [0, 1] \rightarrow S^1$, $\gamma(0) = \gamma(1) = 1$.

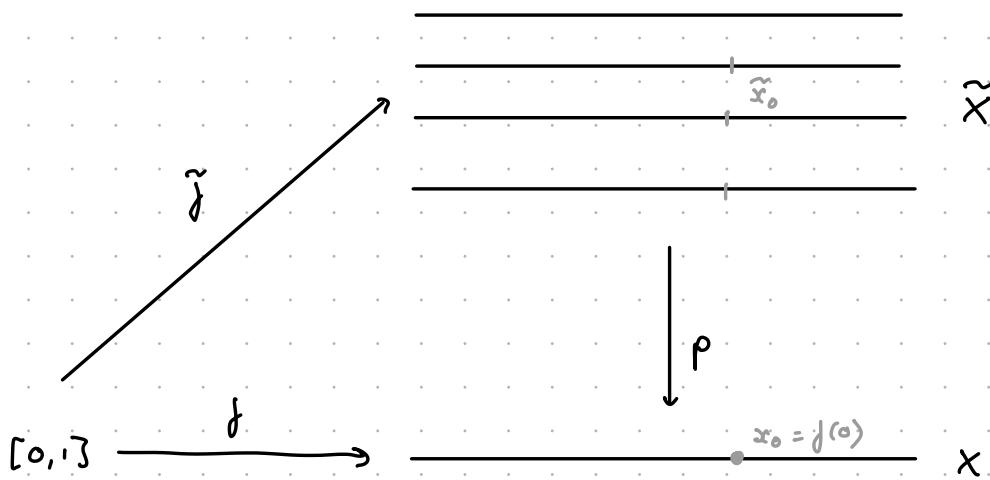
we just know this is cts.
No obvious way to construct lift

Appeal to an existence result
so we know a lift exists

Don't want γ
want a lift of γ !

We need a lifting theorem for paths

Lifting Theorem For Paths: Let $p: \tilde{X} \rightarrow X$ be a covering map. Let $\gamma: [0, 1] \rightarrow X$ be a path starting at $x_0 \in X$. For each $\tilde{x}_0 \in p^{-1}(x_0)$, there is a unique lift $\tilde{\gamma}: [0, 1] \rightarrow \tilde{X}$ starting at \tilde{x}_0 .



Proof: later...

Let $\tilde{\gamma}: [0, 1] \rightarrow \mathbb{R}$ w/ $\tilde{\gamma}(0) = 0$

get this by applying the lifting theorem

lift should measure total # of turns

Now, $p_{\infty}(\tilde{\gamma}(1)) = \gamma(1) = 1$ This is an integer! [γ is a loop]

so $\tilde{\gamma}(1) \in p_{\infty}^{-1}(1) = \mathbb{Z}$

If we have a loop downstairs, then total # of turns is an integer.

$\Rightarrow \tilde{\gamma}(1) = 1$ for some $n \in \mathbb{Z}$

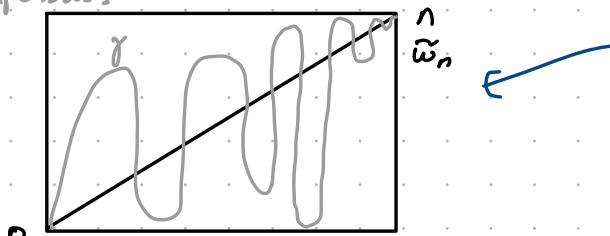
$\tilde{\gamma}$ homeotope

WTS $\tilde{\gamma} \simeq \tilde{w}_n$ rel. ∂

\hookrightarrow natural to do lifting was to find an n . easier to build a homotopy upstairs.

Let $\tilde{f}_t(s) = (1-t)\tilde{w}_n(s) + t\tilde{\gamma}(s)$

Define $f_t(s) = p_{\infty}(\tilde{f}_t(s))$, arguing as before that f_t is a homotopy between w_n and γ rel. endpoints.



This crazy line
is homotopic
to a standard
line path.
Amazing!

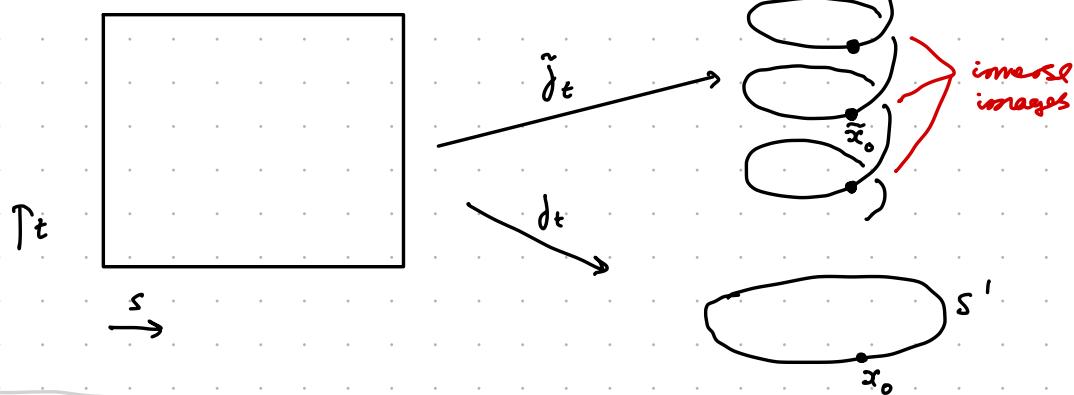
Proof: $\Phi: \mathbb{Z} \rightarrow \pi_1(S', x_0)$ is injective

Take our problem on the circle & lift it up to \mathbb{R}

Proof: WTS if $w_n \simeq w_m$ rel. ∂ , then $m=n$
(we have a homotopy in the circle, don't have a lift.)

We're showing some fundamental group is not trivial: some homotopies can't exist. Given a path, there is no homotopy.

Lifting theorem for homotopies: Let $f_t: I \rightarrow X$ be a homotopy from δ_0 to δ_1 , where $\delta_t(0) = x_0$. Let $\tilde{x}_0 \in p^{-1}(x_0)$. There is a unique lifted homotopy $\tilde{f}_t: I \rightarrow \tilde{X}$, of paths starting at \tilde{x}_0 s.t. $p \circ \tilde{f}_t = f_t$



Proof: later...

As $w_n \simeq w_m$, say δ_t is a homotopy rel ∂ between w_n and w_m .

$$\text{In part. } \delta_t(0) = \delta_t(1) = 1$$

Now let $\tilde{f}_t: [0, 1] \rightarrow \mathbb{R}$ be a lift of δ_t s.t. $\tilde{f}_t(0) = 0$

\tilde{f}_0 is a lift of w_n w/ $\tilde{f}_0(0) = 0$
two paths both have same endpoints

\tilde{w}_n is also a lift of w_n w/ $\tilde{w}_n(0) = 0$

]
lifts of same thing w/
same starting pt.

By uniqueness of path lifting, $\tilde{f}_0(s) = \tilde{w}_n(s)$, equally, $\tilde{f}_1(s) = \tilde{w}_m(s)$

we consider $\tilde{f}_t(1)$, we have $\tilde{f}_0(1) = \tilde{w}_n(1) = 1$

$$\text{Also, } \tilde{f}_1(1) = \tilde{w}_m(1) = 1$$

Two loops homotopic
if
Same # of turns

$$\text{But } \text{Poi}(\tilde{f}_t(1)) = f_t(1) = 1 \Rightarrow \tilde{f}_t(1) \in p^{-1}(1) = \mathbb{Z}$$

lift of a homotopy
rel endpoints

So, as a function of t , $\tilde{f}_t(s)$ is continuous and \mathbb{Z} valued $\Rightarrow \tilde{f}_t(1)$ constant.

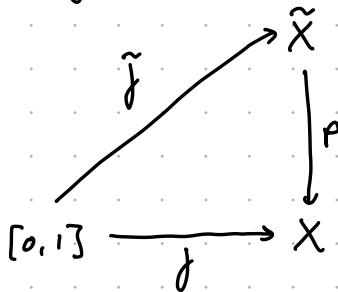
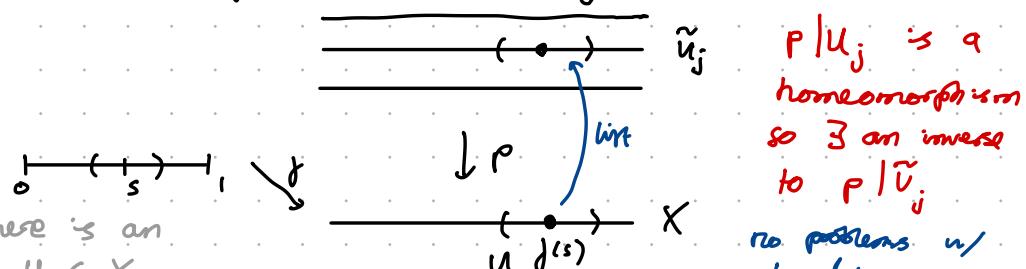
In particular $\tilde{f}_0(1) = \tilde{w}_n(1) = n$] $\Rightarrow n = m \Rightarrow \Phi$ is injective.

$$\tilde{f}_1(1) = \tilde{w}_m(1) = m$$

multiple of a single loop

$\Rightarrow \pi_1(S')$ is a free abelian group generated by w_1 .

Lifting Theorem for paths: Let $p: \tilde{X} \rightarrow X$ be a covering map. Let $j: [0, 1] \rightarrow X$ be a path starting at $x_0 \in X$. Let $\tilde{x}_0 \in p^{-1}(x_0)$. Then \exists unique lift $\tilde{j}: [0, 1] \rightarrow \tilde{X}$ starting at \tilde{x}_0 .



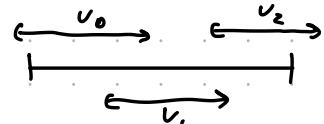
Proof: for each $s \in [0, 1]$, there is an evenly covered open set $U \subset X$ containing $j(s)$

*he made
notation mistakes
here... corrected...*

$p|_{U_j}$ is a homeomorphism so \exists an inverse to $p|_{U_j}$
no problems w/
local inverses...

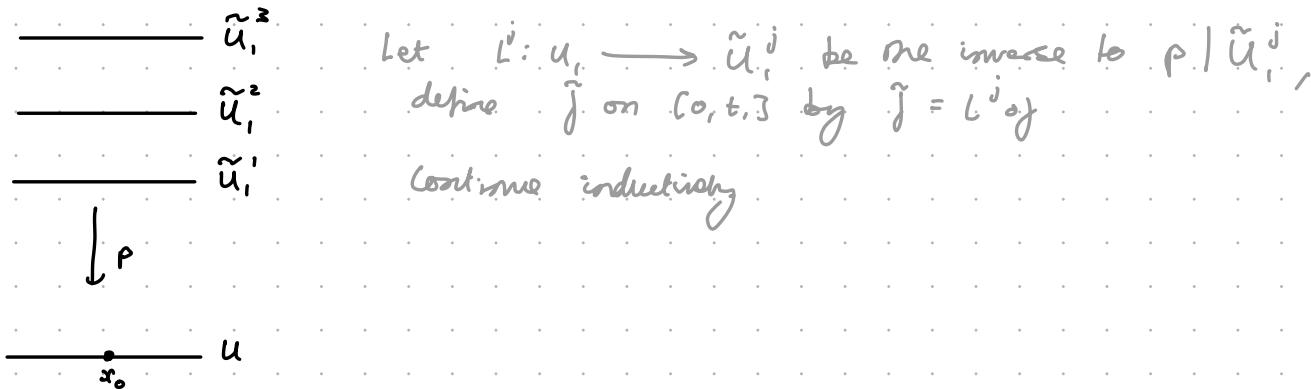
By compactness of $[0, 1]$, \exists finite collection U_0, \dots, U_n which cover $[0, 1]$, so we have

$$0 = t_0 < t_1 < \dots < t_n < 1 \text{ so that } [t_k, t_{k+1}] \subset U_k$$



And $j([t_k, t_{k+1}]) \subset U_k$

Construct \tilde{j} on $[0, t_1]$. $j(0) = x_0$, $p(\tilde{x}_0) = x_0$

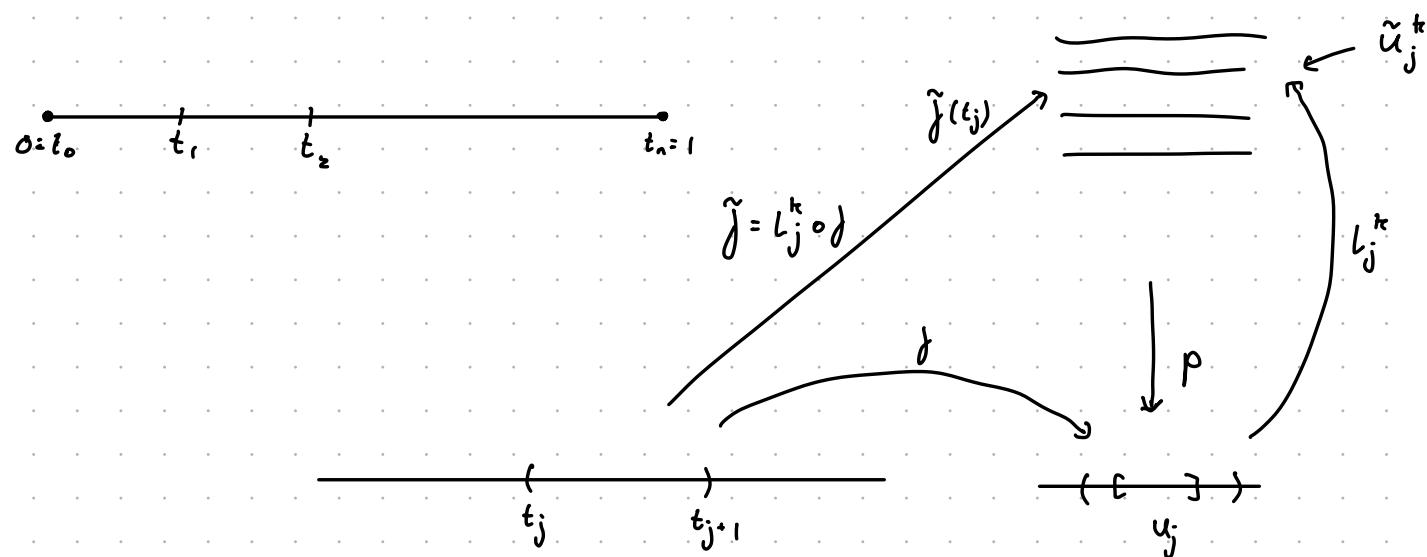


Lecture?

23/10/23

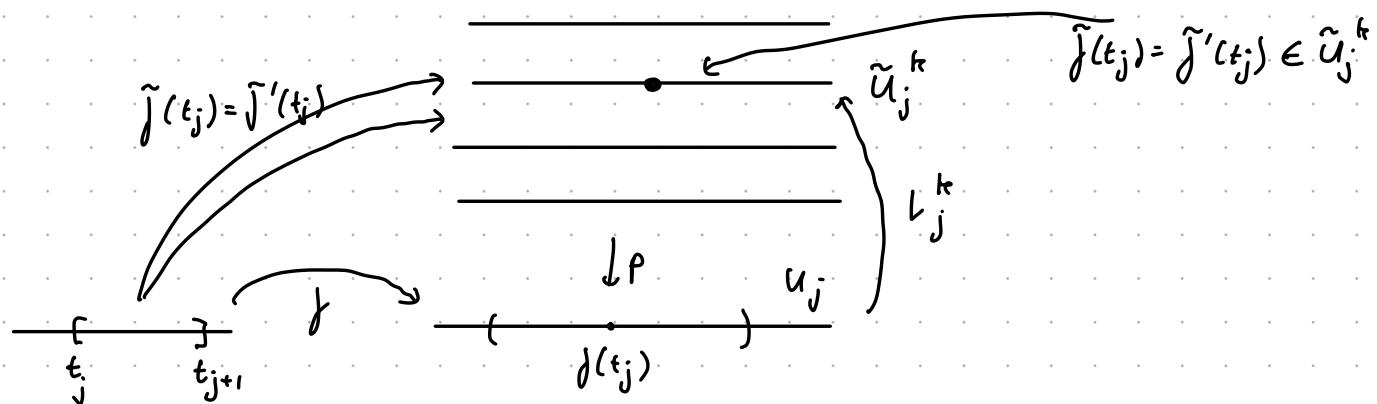
Proof of uniqueness

$$j([t_j, t_{j+1}]) \subset U_j \subset X$$



Assume we have two lifts \tilde{f}, \tilde{f}' with $\tilde{f}(0) = \tilde{f}'(0) = x_0$.
 say $\tilde{f} = \tilde{f}'$ for $s \in [0, t_j]$ for $t_j < 1$ and $\tilde{f} \neq \tilde{f}'$ for $[t_j, t_{j+1}]$

assuming agree
at left endpoint &
disagree elsewhere



- $[t_j, t_{j+1}]$ is connected
 $\Rightarrow f([t_j, t_{j+1}])$ is connected as f is
- $\tilde{f}'([t_j, t_{j+1}]), \tilde{f}([t_j, t_{j+1}])$ both connected
 \Rightarrow conclude, both sets lie in the same inverse image of u_j ,
 \tilde{U}_j^k .
 f & f' agree at $f(t_j)$ so must both lie in same set

claim: \tilde{f} and \tilde{f}' restricted to $[t_j, t_{j+1}]$ are both given by $l_j^k \circ f$.

local lift function

Formally, recall that l_j^k is a homeomorphism inverse to p so

$$l_j^k \circ p \mid \tilde{U}_j^k = \text{Id}_{\tilde{U}_j^k}, \quad p \circ l_j^k \mid U_j = \text{Id}_{U_j}$$

since, $\tilde{f}([t_j, t_{j+1}]) \subset \tilde{U}_j^k$

these images contained
in this set

expand identity

tells us that

$l_j^k \circ f$ is a lift:
 $p \circ l_j^k \circ f = f$

$$\tilde{f} \mid [t_j, t_{j+1}] = \text{Id}_{\tilde{U}_j^k} \circ \tilde{f} \mid [t_j, t_{j+1}] = l_j^k \circ p \circ \tilde{f} = l_j^k \circ f$$

our lift \tilde{f}
is given by

\tilde{f}'

"

\tilde{f}'

"

$\tilde{f}' = l_j^k \circ f$

no f dependence?

Direct
comp
equal

\Rightarrow have uniqueness!

□

General Lifting theorem

← *generalized version of the lifting thm for paths* → \tilde{Y} is a general paracompact space

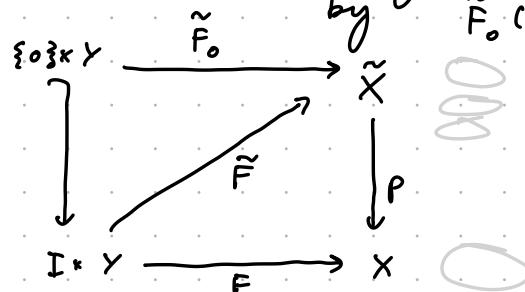
Let $p: \tilde{X} \rightarrow X$ be a covering map.

Given $F: [0, 1] \times Y \rightarrow X$ and a map $\tilde{F}_0: Y \rightarrow \tilde{X}$ lifting

$\downarrow s$ $\downarrow y$
 path parameter $\tilde{Y} \leftarrow$ homotopy paracompact
 was t before but
 a more general
 space now.
 $y = t \in [0, 1]$

$F|_{\{0\} \times Y}$

$(p \circ \tilde{F}_0(y) = F(y, 0))$, then there
 is a unique map $\tilde{F}: [0, 1] \times Y \rightarrow \tilde{X}$
 lifting F ($p \circ \tilde{F} = F$) which is given
 by $\tilde{F}(y, t) = \tilde{F}_0(y)$ on $\{0\} \times Y$



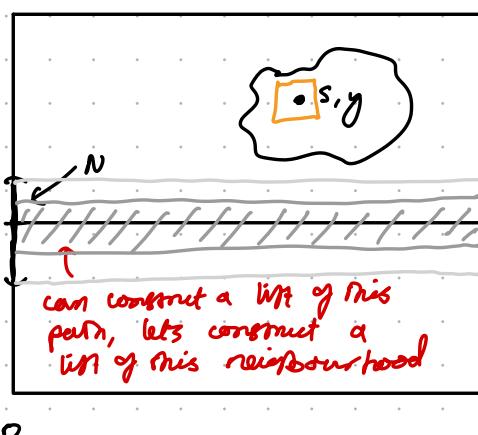
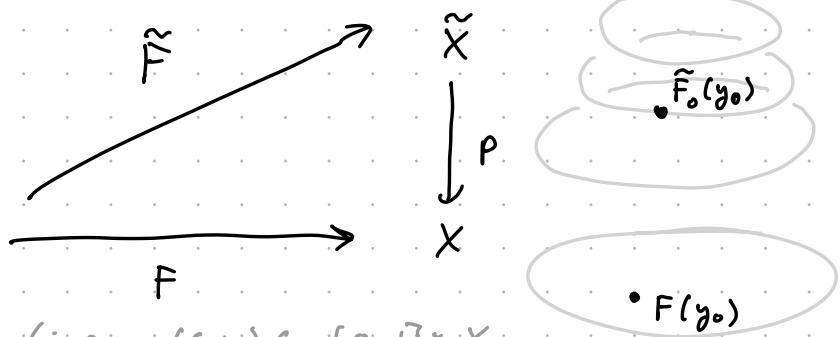
proving in a
 more general
 context

Proof: Using our path lifting theorem, we can lift each path $F: [0, 1] \times Y \rightarrow X$ to a path $\tilde{F}: [0, 1] \times Y \rightarrow \tilde{X}$ w/ $\tilde{F}((0, y)) = \tilde{F}_0(y)$

Thus, there is a function \tilde{F} which satisfies the thm. Doesn't tell us that this function is continuous. (unique path lifting)

WTS function cts (we have uniqueness on every path so showing cts \Rightarrow uniqueness too)

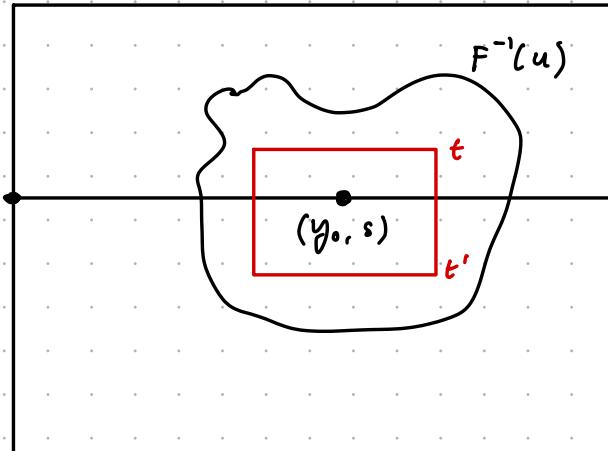
Pick a $y_0 \in Y$. we will construct a cts lift of a family of paths $N \times [0, 1]$ with $N \subset Y$



$F((s, t))$ is contained in any evenly covered set $U \subset X$

$\Rightarrow \exists (t, t') \times N$ mapping to U .

We have a function \tilde{F} that lifts F and satisfies the initial condition y_0 . WTS this function is continuous. Need to find a lift on some neighborhood of y_0 to prove cts.



Point $y_0 \in Y$. Want to find some neighbourhood N of y_0 and a lift of $F|_{[0,1] \times N}$.

For any (y_0, s) , $s \in [0,1]$,

$$F((y_0, s)) \subset U,$$

U evenly covered and open.

We can find a neighbourhood $(t, t') \times N$ containing (y_0, s) .

Using compactness of $I = [0,1]$, there is a finite set of product neighbourhoods covering $[0,1] \times \{y_0\}$.

We can find a $0 < t_0 < t_1 < \dots < t_n = 1$ so that $[t_j, t_{j+1}] \times N_j$ cover the interval and

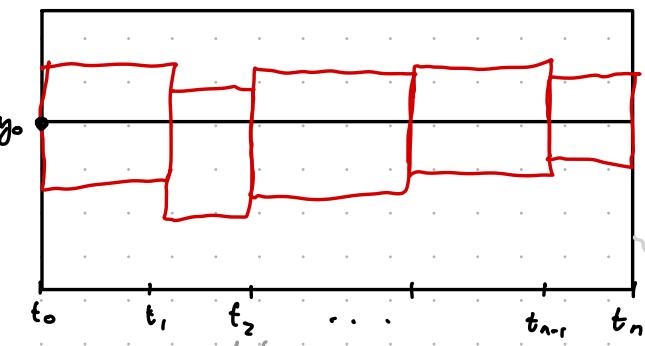
$$F([t_j, t_{j+1}] \times N_j) \subset U_j$$

w/ U_j evenly covered.

Define a lift by setting

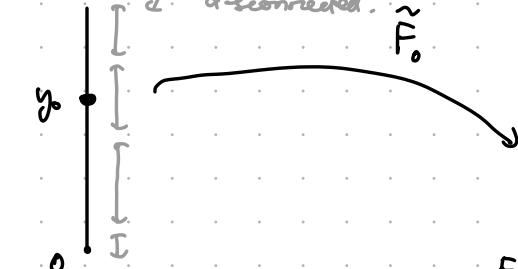
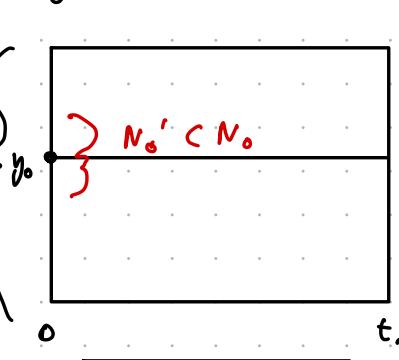
$$\tilde{F}(s, y) = l_0 \circ F(s, y)$$

lots of different lifts so does \tilde{F} satisfy initial conditions?



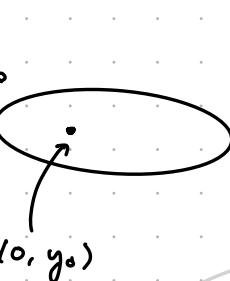
could be disconnected!

$$\tilde{F}_0(y_0) \in \tilde{U}_0^{t_0}$$



neighbourhood
of y_0

This \times space
might not be connected!



$$F(0, y_0)$$

Need not be true in general, but there is some smaller neighbourhood $N_0' \subset N_0$ so that

$$\tilde{F}_0(N_0') \subset \tilde{U}_0^{t_0}$$

using continuity of F_0 and openness of $\tilde{U}_0^{t_0}$.

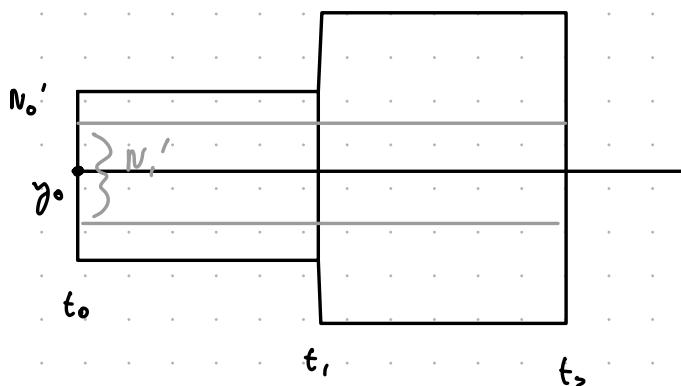
Using the connectivity of the interval & arguing as in part lifting argument, we get

$$\tilde{F}([0, t] \times N_0') \subset \tilde{U}_0^{t_0}$$

whole image lies in our set.

Thus $\tilde{F}([0, b] \times N_0')$ is the lift that satisfies the initial conditions. It is continuous since it is equal to $b_0 F$.

Now consider $[t_1, t_2] \times (N_0' \cap N_1)$. we want a lift \tilde{F} defined on $[t_1, t_2] \times (N_0' \cap N_1)$ so that it agrees w/ the previous lift on $\{t\} \times (N_0' \cap N_1)$



As before, there's some neighborhood

$N_1' \subset N_0' \subset N_0$ satisfying

$\tilde{F}(t, y)$ lifts to $\tilde{u}_t^{k_1}$

for $y \in N_1'$

Define \tilde{F} to be $b_1 \circ \tilde{F}$ on this set.

→ we have \tilde{F} defined on $[0, t_2] \times N_1'$ and $[t_1, t_2] \times N_1'$

They agree on the overlap. By the pasting lemma, we have a [cont. ?] function on $[0, t_2] \times N_1'$.

Repeat this for the remaining intervals gives a cts lift on $[0, 1] \times N_0'$.

[Only doing this a finite # times, so all allowed.]

Lecture 12

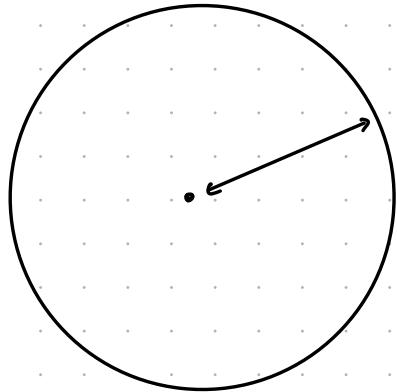
24/10/23

Applications

The fundamental theorem of algebra: Every non-constant polynomial w/ coefficients in \mathbb{C} has a root in \mathbb{C} .

Proof: Say $p(z) = z^n + a_1 z^{n-1} + \dots + a_n$ is a polynomial of degree $n \geq 0$.

Suppose p has no roots. WT consider values of p on circle of radius r .
write $s \mapsto re^{2\pi is}$ to parametrize the circle.



We get a map to the circle by looking at $\frac{p(z)}{|p(z)|}$ [well defined & cts :: assume no roots]

We write $f_r(s) = \frac{p(re^{2\pi is})}{|p(re^{2\pi is})|}$

For each r , we have a map to s .

$f_r(0) = f_r(1)$ so a loop!

we can further normalize: let $\bar{f}_r(s) = \frac{p(re^{2\pi i s})}{|p(re^{2\pi i s})|} \cdot \left(\frac{p(r)}{|p(r)|}\right)^{-1}$

with this, we have $\bar{f}_r(0) = \bar{f}_r(1) = 1$

If $r=0$, then $\bar{f}_r(s) = 1 = w_0(s)$

What happens when $r \rightarrow \infty$? behavior of z^n dominates.
WTS $r \rightarrow \infty \Rightarrow$ map around circle n times.
Fix a value of r_0 sufficiently large

$$r_0 > \{|\alpha_1| + |\alpha_2| + \dots + |\alpha_n| \text{ and } 1\}$$

Intuition: path goes around circle n times \Rightarrow fixed α homotopy!

Consider $p_t(s) = z^n + t(\alpha_1 z^{n-1} + \dots + \alpha_n)$

For fixed z ,
homotopy map
linear homotopy!

$$[p_0(s) = z^n : e^{2\pi i s} p_1(s) = p(z)]$$

Polynomials \rightarrow paths now

Consider $g_t(s) = p_t(r_0 e^{2\pi i s})$ & normalize to unit circle

$$\bar{g}_t(s) = \frac{p_t(r_0 e^{2\pi i s})}{|p_t(r_0 e^{2\pi i s})|} \frac{|p_t(r_0)|}{p_t(r_0)}$$

start at 1

$$\bar{g}_t(s) : [0, 1] \rightarrow \delta' \subset \mathbb{C}$$

$$\bar{g}_t(0) = \bar{g}_t(1) = 1$$

Claim: $\bar{g}_t(s)$ is a cts function for $0 < t < 1$. For $|z| = r_0$

(Need to show that $p_t(z)$ has no zeros for $|z| = r_0$)

$$|z^n| > |z^{n-1}|(|\alpha_1| + \dots + |\alpha_n|) \geq |\alpha_1 z^{n-1}| + |\alpha_2 z^{n-2}| + \dots + |\alpha_n|$$

$|z| = r_0$

This case shows the linear homotopy doesn't go around the circle n times.

Thus $p_t(z)$ has no roots for $|z| = r_0$

Now: Two homotopies, \bar{f} and \bar{g} .

As t goes from 0 to r_0

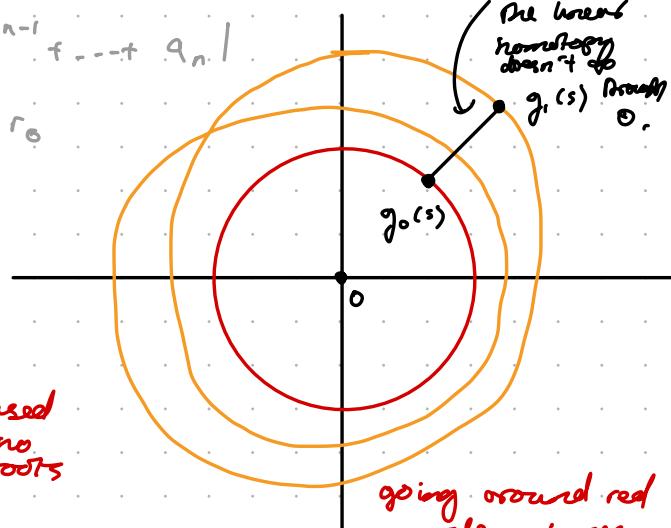
① \bar{f}_t gives a homotopy between the constant path $\bar{f}_0(s) = 1 = w_0(s)$ and \bar{f}_{r_0} .

used
no roots

② As t goes from 1 to 0 , $\bar{g}_t(s)$ gives a homotopy between

$$\bar{f}_{r_0}(s) \text{ and } \bar{g}_1(s) = e^{2\pi i s} = w_n(s)$$

used
 r_0 large enough



Putting these two homotopies together, we get a homotopy rel endpoints from w_0 to w_n .

conclude $n=0$ as $\pi(s, , 1) = \emptyset$

$\Rightarrow p(z)$ is a constant polynomial. \times

Monday 30th October 2023

wrote (X, x_0) , X top-space. $x_0 \in X$

If $h: X \rightarrow Y$ w/ $h(x_0) = y_0$, write $h: (X, x_0) \rightarrow (Y, y_0)$

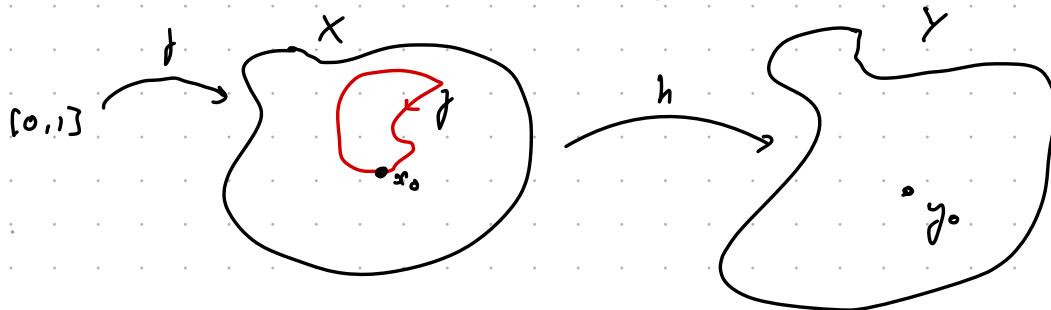
If $h: (X, x_0) \rightarrow (Y, y_0)$, then there is an induced function

$$h_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$$

Proof:

missed this

See LN...



Example let $p_2: S^1 \rightarrow S^1_{CC}$ be given by $p_2(z) = z^2$

claim that $(p_2)_*: \pi_1(S^1, 1) \rightarrow \pi_1(S^1_{CC}, 1)$ is given by $w_n \mapsto w_{2n}$

$$\begin{array}{ccc} SS & & SS \\ \mathbb{Z} & & \mathbb{Z} \\ n & \longmapsto & 2n \end{array}$$

check: $(p_2)_*([w_n]) = [p_2 \circ w_n(s)] = [\exp \ ?]$

Lemma: The induced homomorphism satisfies

$$(1) \quad (\text{Id}_{(X, x_0)})_* = \text{Id}_{\pi_1(X, x_0)}$$

$$(2) \quad \text{If } f: (X, x_0) \rightarrow (Y, y_0) \text{ and } g: (Y, y_0) \rightarrow (Z, z_0), \\ \text{then } (g \circ f)_* = g_* \circ f_*$$

Proof: 1 is clear.

$$(2) \quad (g \circ f)_*([f]) = [g \circ f \circ f] = g_*([f \circ g]) = (g_* \circ f_*)([f])$$

homotopy class
of simple loop
gamma

Turns into a
group of
homomorphisms

Thm: If $f: (X, x_0) \rightarrow (Y, y_0)$ is a homomorphism, then the induced map $f_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ is a group isomorphism.

Proof: $\text{Id}_{(X, x_0)} \circ f \circ f^{-1} = \text{Id}_{(Y, y_0)}$ by lemma

spaces
↓
groups?

$$\text{Id}_{\pi_1(X, x_0)} = (\text{Id}_{(X, x_0)})_* = (f^{-1} \circ f)_* = (f^{-1})_* \circ (f)_*$$

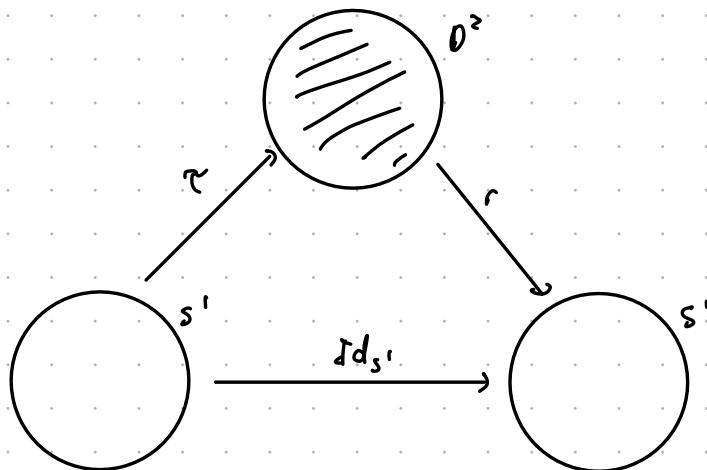
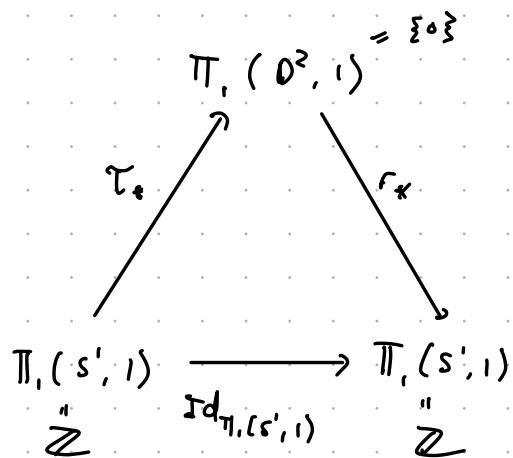
$$\text{Id}_{\pi_1(Y, y_0)} = (f_*) \circ (f^{-1})_* \quad \text{[cancel logic]}$$

$\Rightarrow f_*$ is an isomorphism (left & right inverse)

Example

Let $\tau: S^1 \rightarrow D^2$ be the inclusion of the boundary

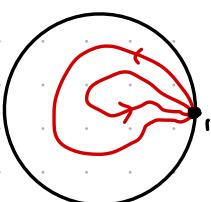
Let $r: D^2 \rightarrow S^1$ be a retraction, that is $r \circ \tau = \text{Id}_{S^1}$.



Note: $\pi_1(D^2, 1)$ is trivial since linear homotopies show every loop is homotopic to the constant loop at 1.

There is no such commutative diagram for groups & homomorphisms.

There is no retraction $D^2 \rightarrow S^1$.



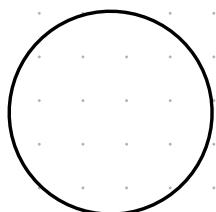
maps, had
to know
when they
exist

groups &
homomorphisms
much easier to
say when they
exist

How topology notes...

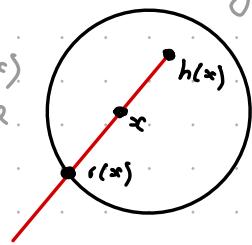
Thm: Every cts map $h: D^2 \rightarrow D^2$ has a fixed point
 $x \in D^2$ ($h(x) = x$.)

Proof: Assume h has no fixed point.
 Since $x \neq h(x)$, they determine a ray.



let $r(x)$
 be the
 point

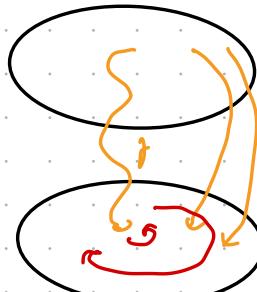
where the ray
 intersects S^1
 boundary of D^1 .



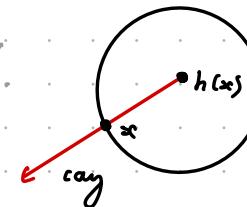
Thus, $r: D^2 \rightarrow S^1$
 w/ $r \circ i = Id_{S^1}$

induction
 map.

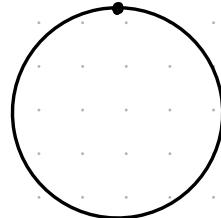
But no such retraction exists
 \Rightarrow have created an impossible object.



However your
 map goes
 upstairs to down
 stairs, there
 won't be a fixed
 point.



If $x \in S^1$,
 then $r(x) = x$.



Borsuk-Ulam Theorem

For any cts map $f: S^2 \rightarrow \mathbb{R}^2$, there exists a pair of antipodal points x and $-x$ in S^2 w/ $f(x) = f(-x)$

① \Rightarrow There is no embedding of S^2 in $\mathbb{R}^2 \Leftarrow$ (won't be injective)

② \Rightarrow At any given time, there are two antipodal points on the earth at which the temperature & humidity are the same.
 cts on \mathbb{R}^2

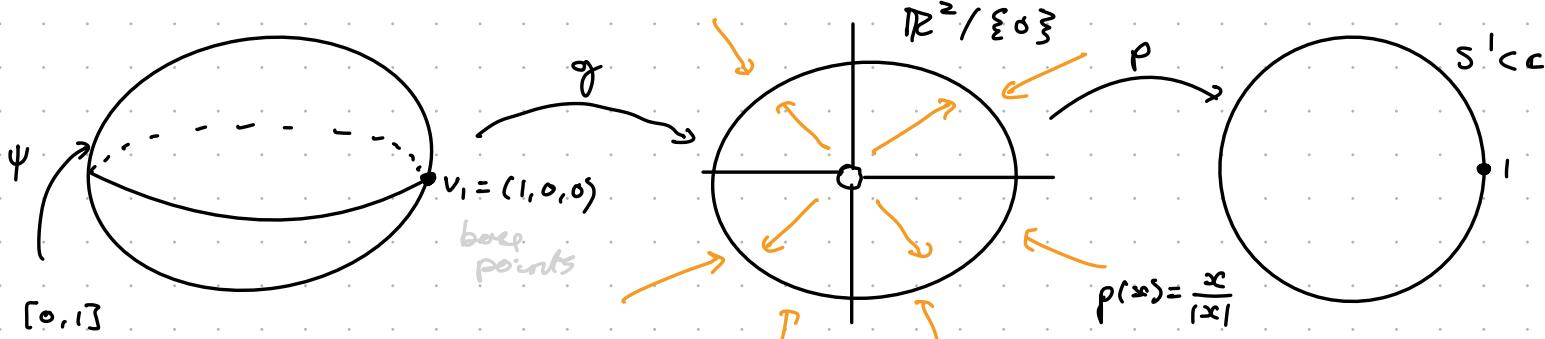
Proof: Assume there is an f w/ $f(x) = f(-x)$ for any $x \in S^2$

Define a function $g: S^2 \rightarrow \mathbb{R}^2$ by $g(x) = f(x) - f(-x)$

By assumption, $g(x) \neq 0$ at $x \in S^2$.

Note that $g(-x) = f(-x) - f(x) = - (f(x) - f(-x)) = -g(x)$, call such a function odd. [like trig].

Need to translate to topological language... How do we do this?



p is a deformation retract to s' [$\therefore \mathbb{R}^2/\{0\}$ so fine]
 p is also an odd function

Hence, $p \circ g$ is also an odd function.

Parametrise the equator:

$$\psi(s) = (\cos(2\pi s), \sin(2\pi s), 0)$$

Need to send basepoints to each other so normalize.

Let $p_1(x) = \frac{p(x)}{p(g(v_1))}$ then $p_1(g(v_1)) = 1$ [rotation]

Note: $p_1 \circ g: (S^2, v_1) \rightarrow (S^1, 1)$ [homeomorphism]

$(p_1 \circ g)_* [\psi] \in \pi_1(S^1, 1)$ [induced map]

What does the induced map do to the equator?

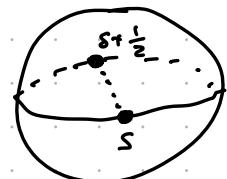
What about oddness? Antipodal point on one equator?

$$\psi(s + \frac{1}{2}) = -\psi(s)$$

antipodal points on equator...

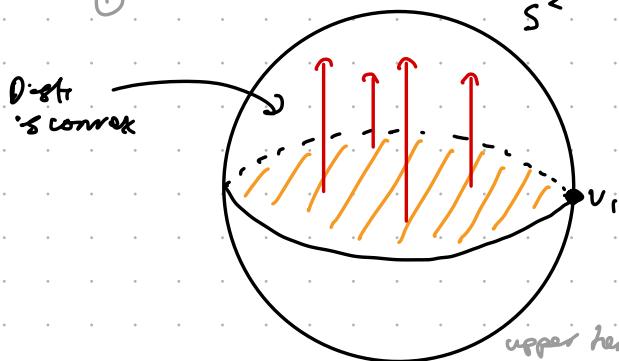
What oddness translates too.

$$p_1 \circ g \circ \psi(s + \frac{1}{2}) = -p_1 \circ g \circ \psi(s)$$



First calculation of $(p_1 \circ g)_* [\psi]$: (w.t.s. loop is trivial)

0



$[\psi]$ is trivial in $\pi_1(D^2, v_1)$
 \therefore The disk is convex.

But D^2 is not on S^2 . How get there?

Project! Define $\phi: D^2 \rightarrow S^2$ by
 homeomorphically...

$$\psi(x, y) = (x, y, \sqrt{1-x^2-y^2})$$

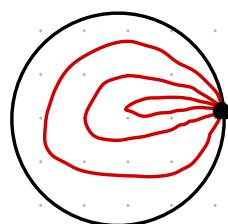
z value to put on the sphere!

$\psi: (D^2, v_1) \rightarrow (UH, v_1)$ [homeomorphism, basepoint preserving]

$\psi_*: \pi_1(D^2, v_1) \rightarrow \pi_1(UH, v_1)$ is an isomorphism

so $[\psi]$ is trivial in $\pi_1(D^2, v_1) \Rightarrow [\psi]$ trivial in $\pi_1(UH, v_1)$

$(p_1 \circ g)_*: \pi_1(UH, v_1) \rightarrow \pi_1(S^1, 1)$, takes $[\psi]$ to $[0]$



so

$$(p_1 \circ g)_* [\psi] \sim [\omega_0] \in \pi_1(S^1, v_1)$$

The constant path

trivial element in $\pi_1(S^1, v_1)$

Second Calculation of $p_{\infty} \circ g \circ \psi(s)$:

Will use the oddness to show that $p_{\infty} \circ g \circ \psi(s)$ is non-trivial.

$$\text{Write } h(s) = p_{\infty} \circ g \circ \psi(s)$$

$$\text{oddness } \Rightarrow h(s + \frac{1}{2}) = -h(s)$$

By lifting γ_m , $\exists \tilde{h}: [0, 1] \rightarrow \mathbb{R}$ s.t.

$$p_{\infty} \circ \tilde{h} = h, \quad \tilde{h}(0) = 0$$

$$\tilde{h}(1) \in \mathbb{Z} \text{ and } h \simeq \omega_m \text{ where } m = \tilde{h}(1)$$

\tilde{h} is mysterious, but we know

$$p_{\infty} \circ \tilde{h}(s + \frac{1}{2}) = -p_{\infty} \circ \tilde{h}(s)$$

We do know some other real number mapping to
 $-p_{\infty}(\tilde{h}(s))$

$$\begin{aligned} p_{\infty}(\tilde{h}(s) + \frac{1}{2}) &= \exp(2\pi i(\tilde{h}(s) + \frac{1}{2})) \\ &= \exp(2\pi i \tilde{h}(s) + \pi i) \\ &= \exp(2\pi i \tilde{h}(s)) \exp(\pi i) \\ &= -p_{\infty}(\tilde{h}(s)) \end{aligned}$$

\Rightarrow Two different points mapping to same pt in circle.

Conclude: Since any r, r' w/ the same image under p_{∞} differ by an integer (going up the helix in steps), we have

$$\tilde{h}(s + \frac{1}{2}) - (\tilde{h}(s) - \frac{1}{2}) = n_s \in \mathbb{Z}$$

Apriori, n_s depends on s , but LHS cts function of s . So $n = n_s$ is constant.

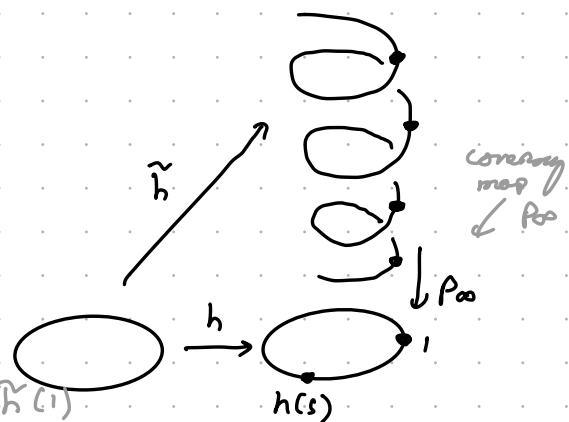
$$\tilde{h}(s + \frac{1}{2}) = \tilde{h}(s) + \frac{1}{2} + n$$

$$\text{Take } s=0, \Rightarrow \tilde{h}(\frac{1}{2}) = \underbrace{\tilde{h}(0)}_{=0} + \frac{1}{2} + n = n + \frac{1}{2}$$

$$\text{Take } s = \frac{1}{2} \Rightarrow \tilde{h}(1) = \tilde{h}(\frac{1}{2}) + n + \frac{1}{2}$$

$$\text{Substitute: } \tilde{h}(1) = n + \frac{1}{2} + n + \frac{1}{2} = 2n + 1$$

$$\Rightarrow h \simeq \omega_{2n+1}$$



But 1st case was $h \simeq w_0$.

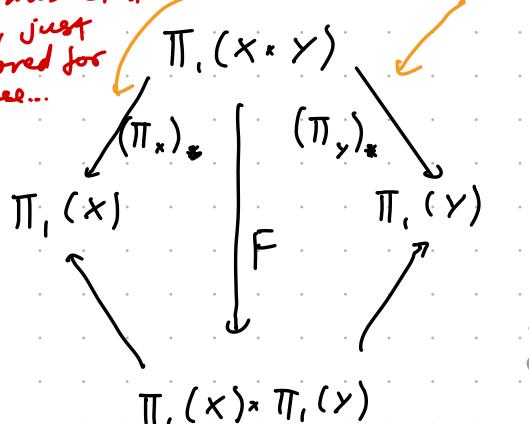
Thus $2n+1=0$, 0 even, $2n+1$ odd X

{map w/out this property & maths breaks}

Proposition: $\Pi_1(X \times Y, (x_0, y_0)) = \Pi_1(X, x_0) \times \Pi_1(Y, y_0)$

Proof: RHS is product of groups.
A basic property of groups
is that a function f is
determined & determines a pair
of functions g, h s.t. $f = (g, h)$

Bozegonts still
there, just
removed for
ex...



using the
induced map $\Pi_1(X, x_0) \times \Pi_1(Y, y_0)$

Note that $X \times Y \rightarrow X$ gives an induced
map from $\Pi_1(X \times Y)$ to $\Pi_1(X)$.

This is a homomorphism $F = ((\Pi_X)_*, (\Pi_Y)_*)$

A basic property of the product topology is
that a function $f: Z \rightarrow X \times Y$ is
cts iff the maps $g: Z \rightarrow X$, $h: Z \rightarrow Y$
defined by $f(z) = (g(z), h(z))$ are both cts.

Take $Z = I$ & we get a
way to construct loops.

Claim: F is surjective

Pf: Pick

$$([\gamma_x], [\gamma_y]) \in \Pi_1(X, x_0) \times \Pi_1(Y, y_0)$$

constant
paths

Then, (γ_x, γ_y) is a loop in $X \times Y$
which maps to γ_x under Π_X and
 γ_y under Π_Y .

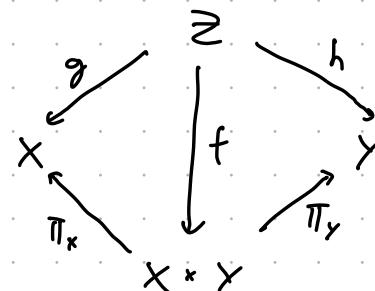
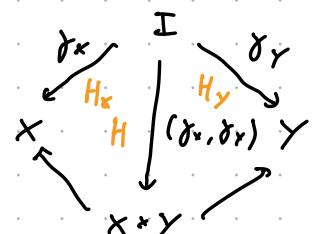
This shows surjectivity.

Claim: F is injective

Pf: claim that γ is a loop in $X \times Y$ that maps to the
terminal element of $\Pi_1(X) \times \Pi_1(Y)$. We have a homotopy
 $H: I \times I \rightarrow X \times Y$ between (γ_x, γ_y) and e (identity).

constant
homotopies

$H = (H_x, H_y)$ where H_x is a homotopy between γ_x and e .



Products of groups
&
products of spaces

No different things mapping to the same thing \Rightarrow construct a homotopy to show they are the same.

Corollary: $\pi_1(T^2) = \pi_1(S^1) \times \pi_1(S^1) = \mathbb{Z} \times \mathbb{Z}$

Corollary: $\pi_1(T^n) = \mathbb{Z}^n$

The Fundamental Group of the n -sphere for $n \geq 2$

Stereographic Projection

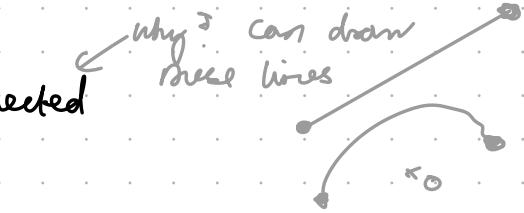
Let $N = (0, 0, \dots, 0, 1)$, $S = (0, 0, \dots, 0, -1)$

There is a homomorphism $\psi_N: S^n - \{\mathbf{N}\} \rightarrow P_S$

Also, we have $\psi_S: S^n - \{\mathbf{S}\} \rightarrow P_N = (\{x_1, x_2, \dots, x_n, 1\})$

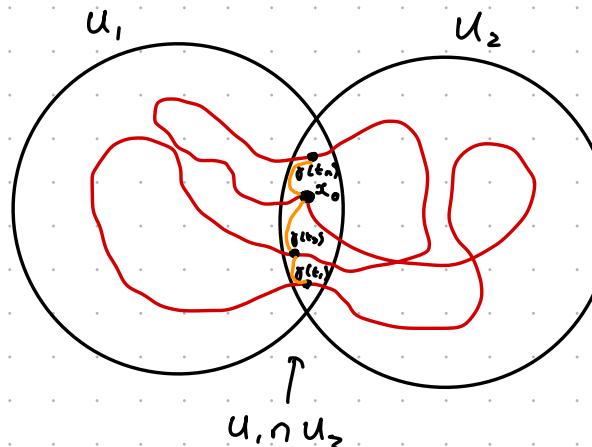
Let $U_1 = S^n / \{\mathbf{N}\}$, $U_2 = S^n / \{\mathbf{S}\}$,

claim $U_1 \cap U_2 \cong \mathbb{R}^n / \{0\}$ is path connected



Proposition: For $n \geq 2$, $x_0 \in S^n$, $\pi_1(S^n, x_0)$ is trivial group.

Proof: Say we have a loop γ , assume $x_0 \neq N, S$, based at x_0 .

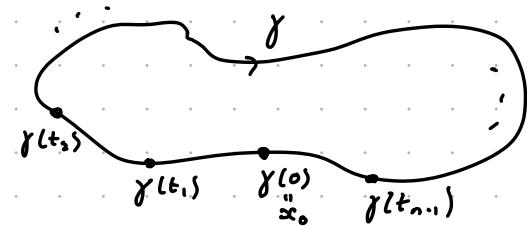


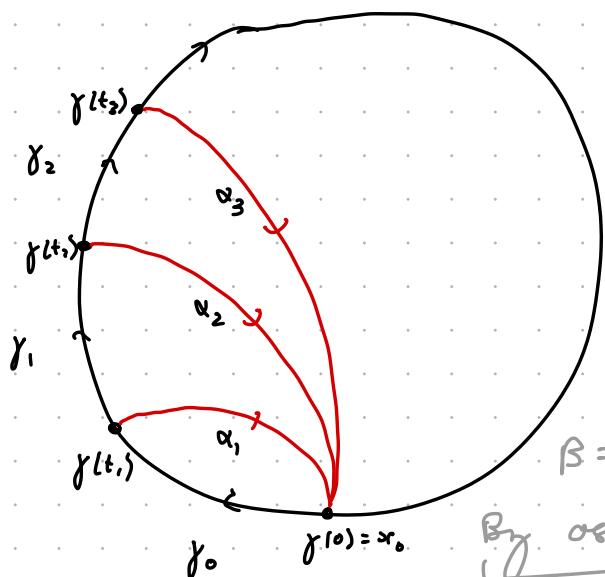
$\gamma: [0, 1] \rightarrow S^n$ is a loop

$\gamma: [0, 1] \rightarrow S^n$. Consider $\gamma^{-1}(U_1)$ and $\gamma^{-1}(U_2)$.

Those cover I , find a finite subcover.

choose $t_0 = 0, \dots, t_n = 1$ s.t. $\gamma([t_j, t_{j+1}]) \subset U_1$ or U_2





WTS γ is trivial. How? reparametrisation

Let $\gamma_j(s) = \gamma(t_j + s(t_{j+1} - t_j))$

$\gamma_j: [0, 1] \longrightarrow S^1$

let paths \longrightarrow loops

$$\beta = (\gamma_0 \cdot \alpha_1) \cdot (\bar{\alpha}_1 \cdot \gamma_1 \cdot \alpha_2) \cdot \dots \cdot (\bar{\alpha}_m \cdot \gamma_m \cdot \alpha_m) \cdot (\bar{\alpha}_m \cdot \gamma_m)$$

By assumption, $\gamma_1 \cdot \alpha_1 \simeq e_{x_0}$
 $U_1 \cap U_2$ path connected $\bar{\alpha}_1 \cdot \gamma_2 \cdot \alpha_2 \simeq e_{x_0}$

identity

$$\beta \simeq e_{x_0} \cdot \dots \cdot e_{x_0} \simeq e_{x_0} \text{ rel } \partial$$

homotopy of paths

Reassociating: $\beta = \underbrace{\gamma_1 \cdot (\alpha_1 \cdot \bar{\alpha}_1)}_{\simeq e_{\gamma(t_1)}} \cdot \underbrace{\gamma_2 \cdot (\alpha_2 \cdot \bar{\alpha}_2)}_{\simeq e_{\gamma(t_2)}} \cdot \dots \cdot \underbrace{(\alpha_m \cdot \bar{\alpha}_m)}_{\simeq e_{\gamma(t_m)}} \cdot \gamma_m$

$$\simeq \gamma_1 \cdot \dots \cdot \gamma_m \text{ rel } \partial$$

$$\simeq \gamma \text{ rel } \partial$$

conclude by transitivity of homotopies $\gamma \simeq e_{x_0}$ rel ∂

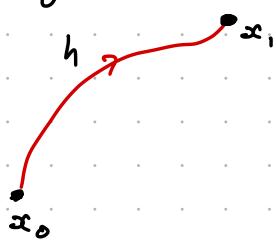
The technique for this proof can be used in other situations.

Say that $U_1 \cap U_2$ are path connected; U_1, U_2 are not simply connected. The proof shows that every element of $\Pi_1(U_1 \cap U_2)$ is a product of elements of $\Pi_1(U_1)$ and $\Pi_1(U_2)$.

Def: A path connected space X is simply connected if $\Pi_1(X, x_0) = \{[e_{x_0}]\} (= \{0\})$

Note: Recall that $\beta_h: \Pi_1(X, x_0) \longrightarrow \Pi_1(X, x_0)$

$\beta_h(\gamma) = [\bar{h} \cdot f \cdot h]$, so S^n for $n \geq 2$ is simply connected.



Corollary: \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$

Proof: Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^n$ is a homeomorphism. Then $f: \mathbb{R}^2 / \{0\} \longrightarrow \mathbb{R}^n / \{f(0)\}$ is also a homeo.

The Main Result

As much as we can prove w/ $\Pi_1(X, x_0)$

In case $n=1$: $\mathbb{R}^1/\{\infty\}$ disconnected, $\mathbb{R}^2/\{\infty\}$ connected
so not homeomorphic. $\mathbb{R}^2 \neq \mathbb{R}^1$. Using connectivity...

For any n , $\mathbb{R}^n/\{\infty\} \cong \mathbb{R} \times S^{n-1}$ [homeomorphism]

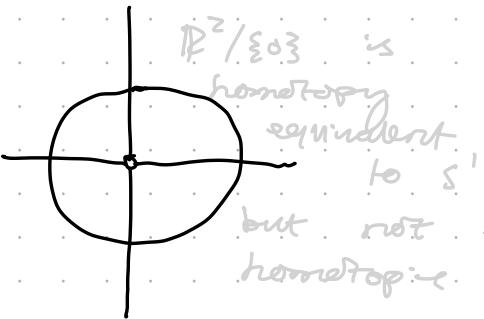
$$\begin{aligned}\pi_1(\mathbb{R}^n - \{\infty\}) &= \pi_1(\mathbb{R} \times S^{n-1}) \\ &= \pi_1(\mathbb{R}) \times \pi_1(S^{n-1}) \\ &= \{\infty\} \times \pi_1(S^{n-1}) \\ &= \pi_1(S^{n-1})\end{aligned}$$

$$\text{Thus, } \pi_1(\mathbb{R}^2 - \{\infty\}) = \pi_1(S^1) = \mathbb{Z}$$

$$\text{For } n \geq 2, \pi_1(\mathbb{R}^n - \{\infty\}) = \pi_1(S^{n-1}) = \{\infty\}$$

Since homeomorphic spaces have the same fundamental group,
see that $\mathbb{R}^2 - \{\infty\}$ not homeomorphic to $\mathbb{R}^n - \{\infty\}$
for $n \geq 2$

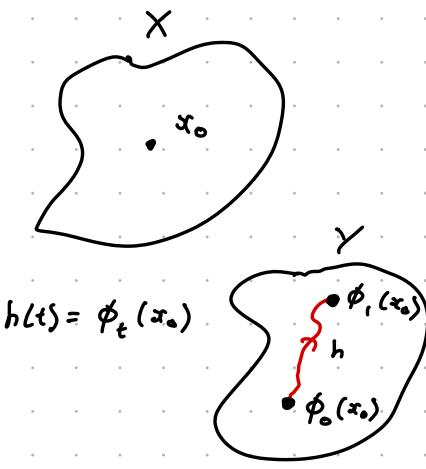
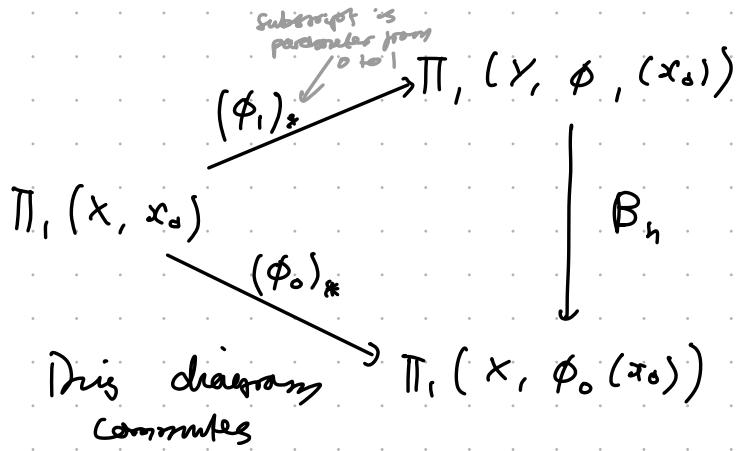
π_1 can be used to show that spaces are not homotopy equivalent to one another.



Prop: If $\phi: X \rightarrow Y$ is a homotopy equivalence, then $\phi_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, \phi(x_0))$ is an isomorphism

Proof: Lemma 1st.

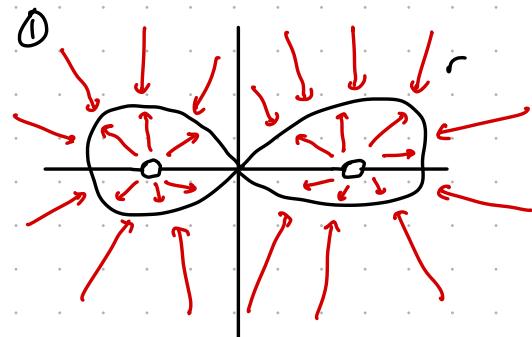
Lemma: If $\phi_t: X \rightarrow Y$ homotopy, h a path from $\phi_t(x_0)$ to $\phi_0(x_0)$, formed by the image of the base point x_0 for $t \in [0, 1]$, then



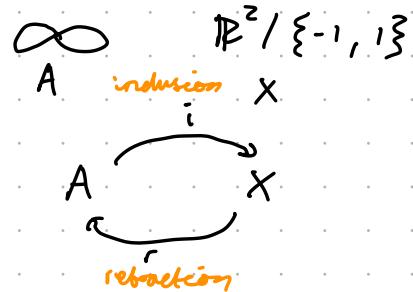
homotopies ignore base points

π_1 cares... connect!

Examples of Homotopy Equivalent Spaces



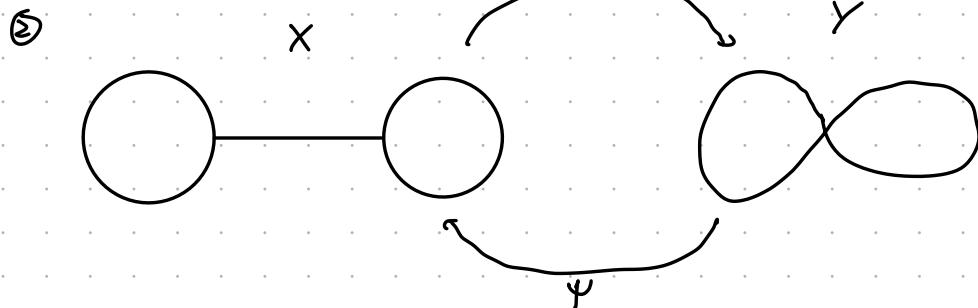
Deformations
retractions



$$r \circ i = \text{Id}_A$$

$$i \circ r \simeq \text{Id}_X$$

homotopic

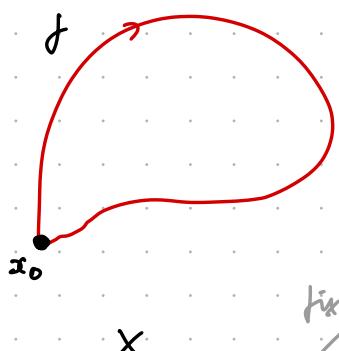


claim:

$$\psi \circ \phi \simeq \text{Id}_X$$

$$\phi \circ \psi \simeq \text{Id}_Y$$

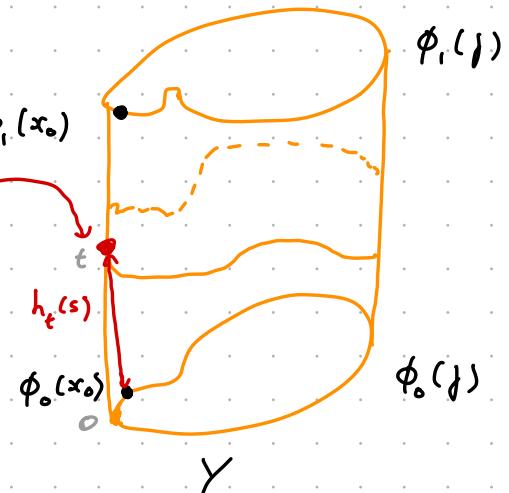
Proof:
(of the
lemma)



fix a particular
t value

Define $h_t(s) = h(t-s)$ for $s \in [0,1]$
 $s \in [0,1]$ so $t-s \in [0, t]$ *rescaling*

let $h_t = \phi_t \circ x_0$



Define a homotopy, $h_t \cdot (\phi_t \circ f) \cdot h_t$

This is
the path for
some t fixed

What is this?

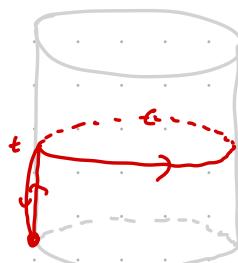
$$h_t \cdot (\phi_t \circ f) \cdot \bar{h}_t$$

When $t=0$, this is the path $\phi_0(f)$

When $t=1$, this is the path $h \cdot (\phi_1(f)) \cdot \bar{h} = \beta_h(\phi_1(f))$
 up, around & back again.

(where $\beta_h(f) = [h \cdot f \cdot \bar{h}]$)

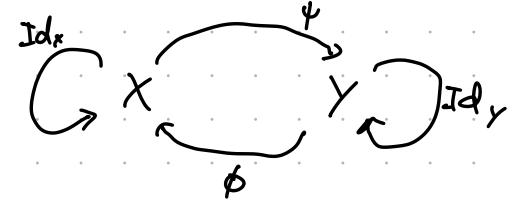
To show diagram commutes,
 we have constructed a homotopy
 between these two loops
 \Rightarrow have the same homotopy class



This shows that
 $\phi_0(f) \simeq \beta_h(\phi_1(f))$
 $\Rightarrow [\phi_0(f)] = [\beta_h(\phi_1(f))]$

This is the statement that
 the diagram commutes

Prop: If $\phi: X \rightarrow Y$ is a homotopy equivalence, then $\phi_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, \phi(x_0))$ is an isomorphism



Proof:

$$\begin{array}{ccc}
 & \pi_1(Y, \phi(x_0)) & \\
 \phi_* \nearrow & & \searrow \psi_* \\
 \pi_1(X, x_0) & \xrightarrow{(\psi \circ \phi)_*} & \pi_1(X, \psi \circ \phi(x_0)) \\
 \searrow \text{Id}_X & & \nearrow \beta_h \\
 & \pi_1(X, x_0) &
 \end{array}$$

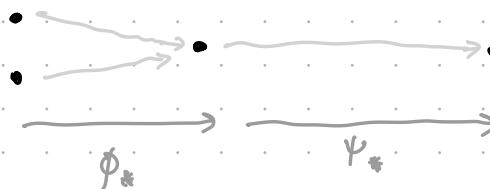
lemma says this diagram commutes

This change of basepoint map is an isomorphism.
Why? can write down an inverse! $(\beta_h)^{-1} = \beta_{\bar{h}}$

claim that $\psi_* \circ \phi_*$ is a bijection

[route on bottom
route on top]

This shows that ϕ_* is injective.



If $\phi_*(x) = \phi_*(y)$ for $x \neq y$

Then $\psi_*(\phi_*(x)) = \psi_*(\phi_*(y))$ but this is a bijection

$\Rightarrow x = y$ ~~so~~ so injection

$$\begin{array}{ccccccc}
 \pi_1(X, x_0) & \xrightarrow{\phi_*} & \pi_1(Y, \phi(x_0)) & \xrightarrow{\psi_*} & \pi_1(X, \psi_* \phi_*(x_0)) & \xrightarrow{\phi_*} & \pi_1(Y, \phi(\psi_*(\phi(x_0)))) \\
 & & \text{bijection so} & & & & \\
 & & \psi_* \text{ injective} & & & & \\
 & & \curvearrowright & & & & \\
 & & \text{bijection so} & & & & \\
 & & \phi_* \text{ injective} & & & &
 \end{array}$$

claim ϕ_* is a surjection.

Proof: Say $y \notin \text{Im}(\phi_*)$, then $\psi_*(y)$ is in the image of $\psi_*(\phi_*(x)) = \psi_*(\phi_*(x))$ for some $x \in X$

This shows ψ_* ~~not~~ is injective ~~so~~

\Rightarrow so ϕ_* is a surjection

$\Rightarrow \phi_*$ is a bijection so isomorphism.

Def: A space X is contractible if it is homotopy equivalent to a point.

e.g. \mathbb{R}^n is contractible (linear homotopy)

Corollary: A contractible space is simply connected.

Proof: Use lemma, $\pi_1(X, x_0) = \{\text{id}\}$ & isomorphism

Corollary: S^2 and T^2 are not homotopy equivalent

Proof: different π_1 , $\pi_1(S^2) = \mathbb{Z}^2$, $\pi_1(T^2) = \mathbb{Z}^3$

Corollary: For $n \geq 2$, S^n & S^1 are not homotopy equivalent

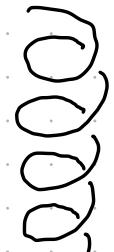
Proof: Different fundamental groups. \mathbb{Z}^1 and \mathbb{Z} w/ $n \geq 2$

Note: S^n for $n \geq 2$ is simply connected but not contractible.

↳ need more invariants for this.

In understanding S^1 , the helix picture was important.

We want to develop a more robust theory of covering spaces, and their connections w/ fundamental groups.



What is the fundamental group of the figure 8?

Is there a nice covering space that plays the role of the helix?

Homotopy Lifting Theorem (for homotopies rel ∂)

Let $p: \tilde{X} \rightarrow X$ be a covering map

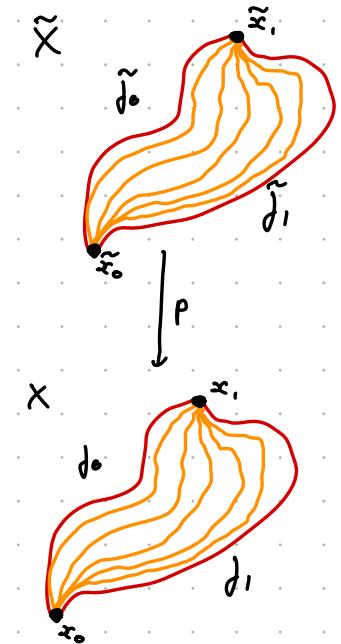
Given a homotopy rel ∂ , $f_t: I \rightarrow X$ w/
 $f_t(0) = x_0, f_t(1) = x_1, \forall t \in I$

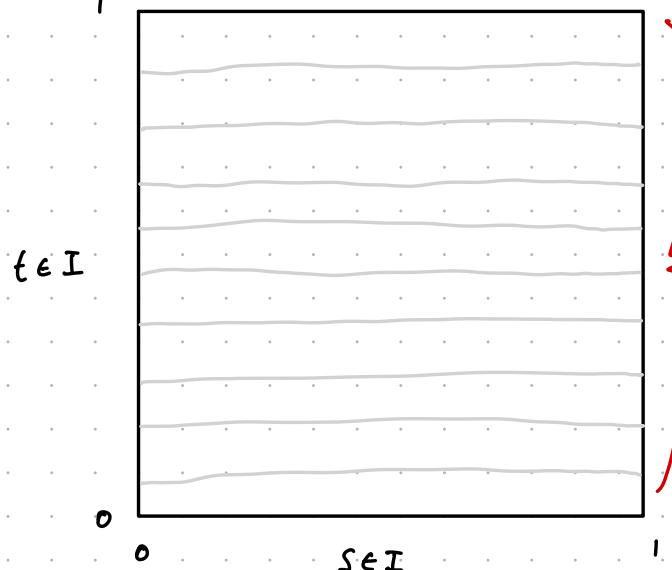
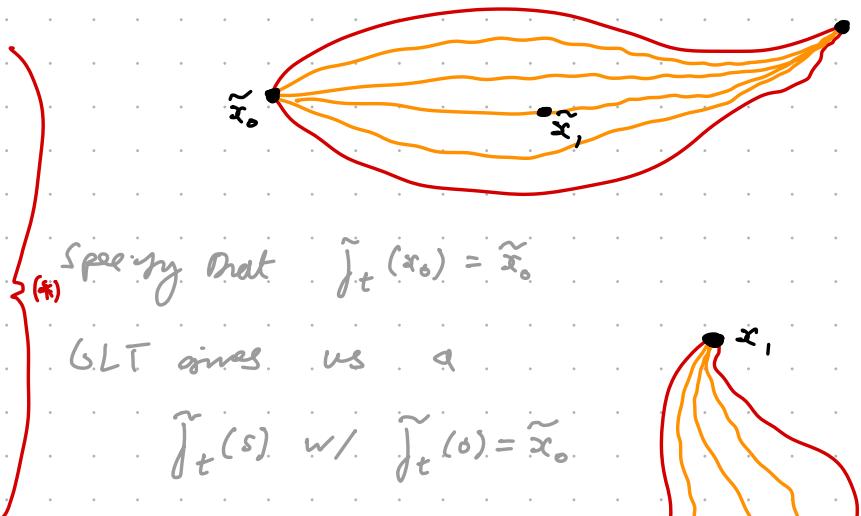
Given an $\tilde{x}_0 \in \tilde{X}$, there is a unique lift

\tilde{f}_t w/ $\tilde{f}_t(0) = \tilde{x}_0$

Set where \tilde{x}_0 lifts to the f_t lift to the same endpoint.

Proof: Apply the general lifting thm w/ $Y = I$

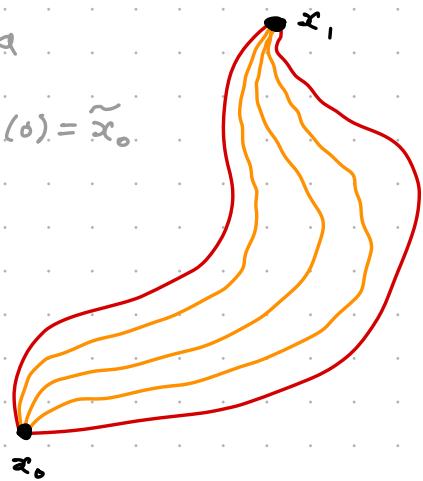




Specifying that $\tilde{f}_t(x_0) = \tilde{x}_0$

GLT gives us a

$\tilde{f}_t(s)$ w/ $\tilde{f}_t(0) = \tilde{x}_0$.



Apply uniqueness of lifts of paths to the path $t \mapsto f_t(s)$

Note, $\tilde{x}_1 = \tilde{f}_0(1)$

Observe, the constant functions $t \mapsto \tilde{x}_1$ is a lift of $f_t(1)$ w/ $f_0(1) = \tilde{x}_1$.

Two lifts of the same path w/ same initial point.

① $\tilde{f}_t(1)$ gives a lift of the constant path $f_t(1) = x_1$ w/ $f_0(1) = x_1$.

② The constant path $t \mapsto \tilde{x}_1$ gives a lift of the constant path $f_t(1) = x_1$.

By uniqueness, $\tilde{f}_t(1) = x_1$.

\Rightarrow conclude that the two paths are the same.

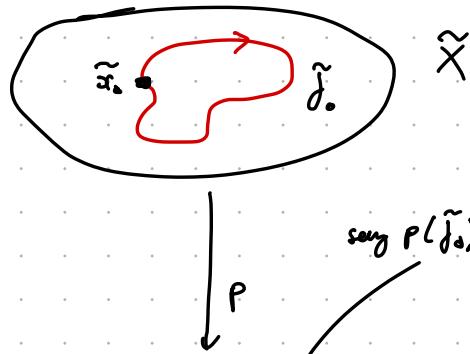
Say $p: \tilde{X} \rightarrow X$ is a covering space.

Prop: The map $p_*: \Pi_1(\tilde{X}, \tilde{x}_0) \rightarrow \Pi_1(X, x_0)$ induced by the covering map is injective and the image consists of homotopy classes of loops based at x_0 , whose lifts are loops.

Example: $S^1 \xrightarrow{p_\infty} S^1, p_\infty(z) = z^n$

$\mathbb{Z} \xrightarrow{(p_\infty)_*} n\mathbb{Z} \quad (p_\infty)_*: \mathbb{O}^e \rightarrow \mathbb{O} \in \mathbb{Z}$

Proof:



say $\tilde{j}_0 : I \rightarrow \tilde{X}$ is a loop which is mapped to a trivial in X .

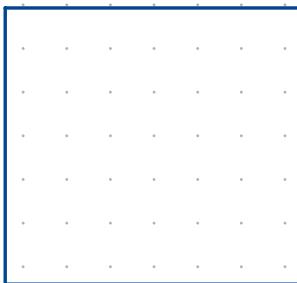
If $[\rho(\tilde{j}_0)]$ is trivial, there is say $\rho(\tilde{j}_0) = j_0$ some homotopy j_t with $j_0 = f_1$ and $j_1 = e_{\tilde{x}_0}$.

By prev. result, there is a lift \tilde{j}_t with $\tilde{j}_0 = \tilde{j}_0$ and $\tilde{j}_1 = e_{\tilde{x}_1}$.

Thus, \tilde{j}_0 is trivial in $\pi_1(\tilde{X}, \tilde{x}_0)$.

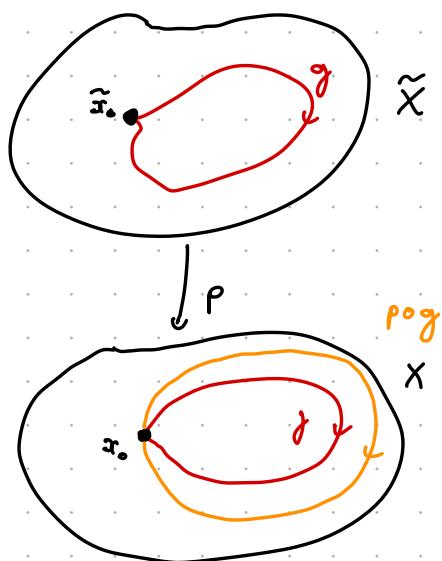
A homotopy between pog and f

- ① loop upstairs
- ② Projects down to a loop downstairs & f is homotopic to this
 \hookrightarrow we don't know f lifts to a loop.
- ③ If you lift your homotopy



$s=0$

$s=1$

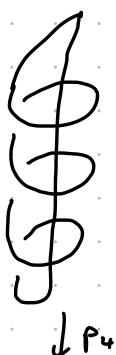


Fix $s \in [0, 1]$ constant so they are loops \therefore constant

Monday 13th Nov 2023

Example covering space

① $P_4: S^1 \longrightarrow S^1$ $P_4(z) = z^4$



← some legal bottoms
to consider

$$(P_4)_*: \pi_1(S^1, 1) \longrightarrow \pi_1(S^1, 1)$$

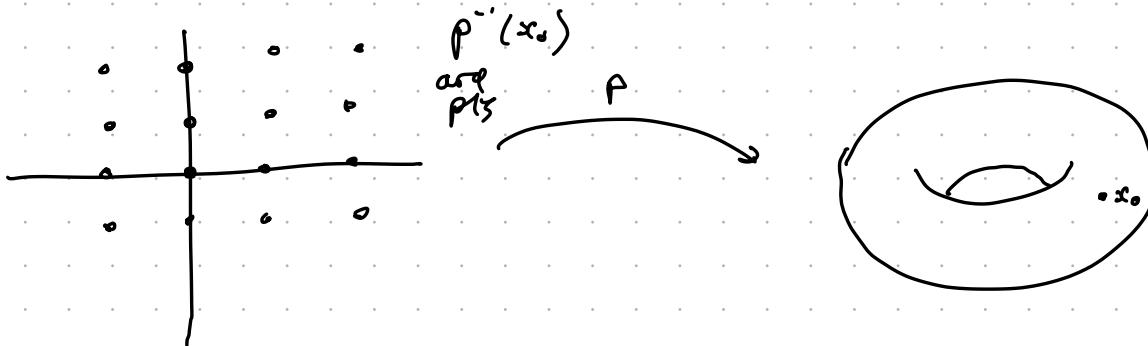
$$\mathbb{Z} \longrightarrow \mathbb{Z}$$

$$(P_4)_*(n) = 4n$$

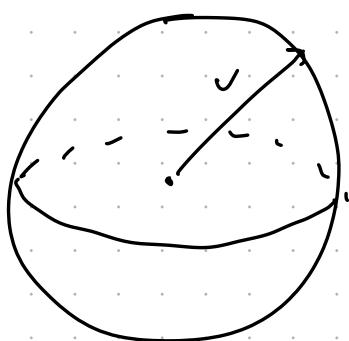
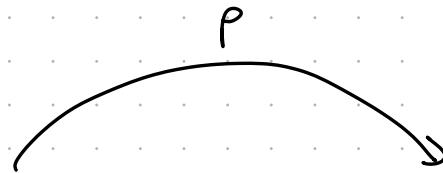
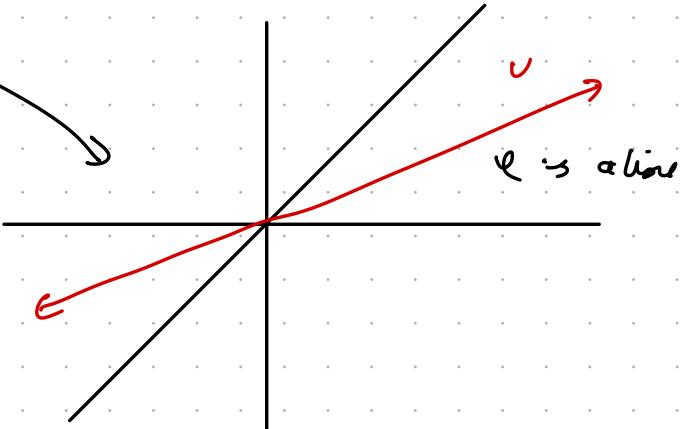
a closed loop in S^1
will map to a path under P_4^{-1}

② $P: \mathbb{R}^2 \longrightarrow T^2$

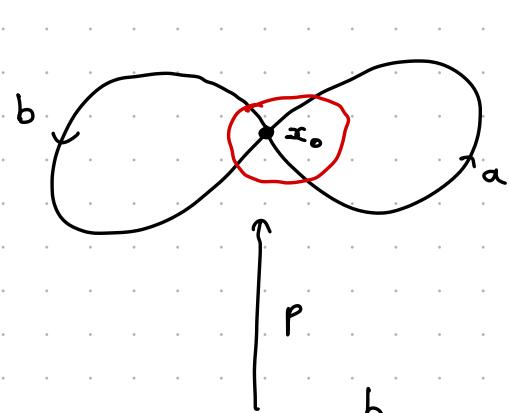
$$P(x, y) = (e^{2\pi i x}, e^{2\pi i y}) \in S^1 \times S^1 \subset \mathbb{C} \times \mathbb{C}$$



③ $P: S^2 \longrightarrow \mathbb{RP}^2$ ← set of lines
in $\mathbb{R}P^3$

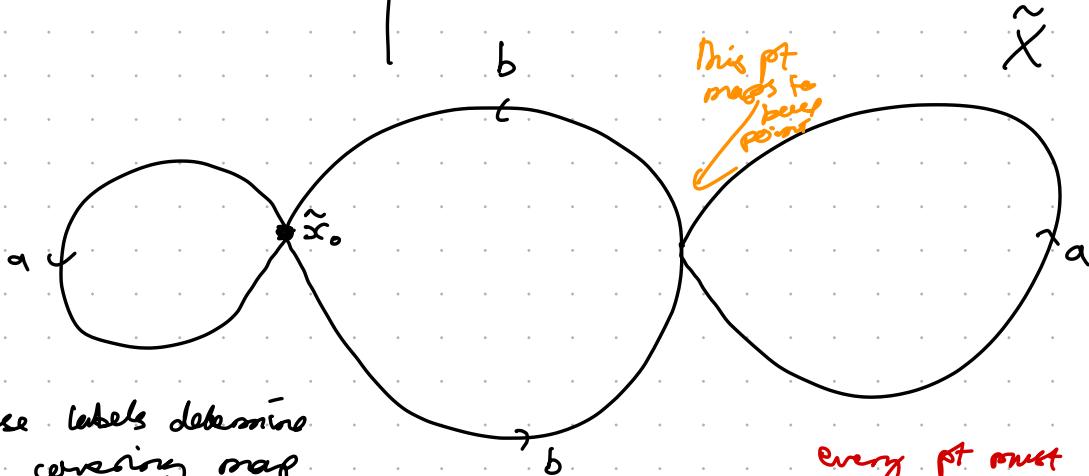


④ Covering spaces of the figure 8



Consider

(a)



These labels determine a covering map

$$p: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0)$$

Net of covering spaces of the figure 8. lots of possibilities

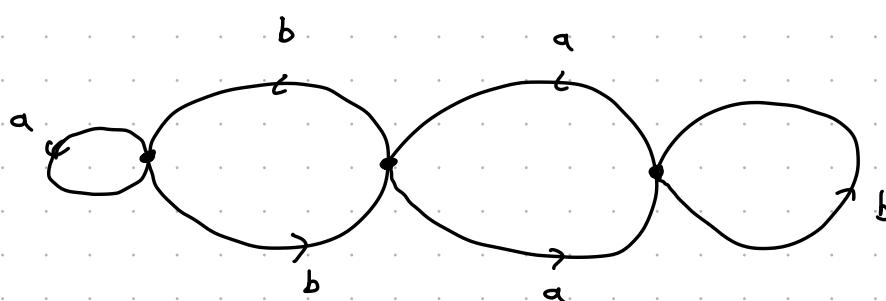
every pt must be evenly covered

each $p^{-1}(u)$ with $x_0 \in u$ should have 4 branches.

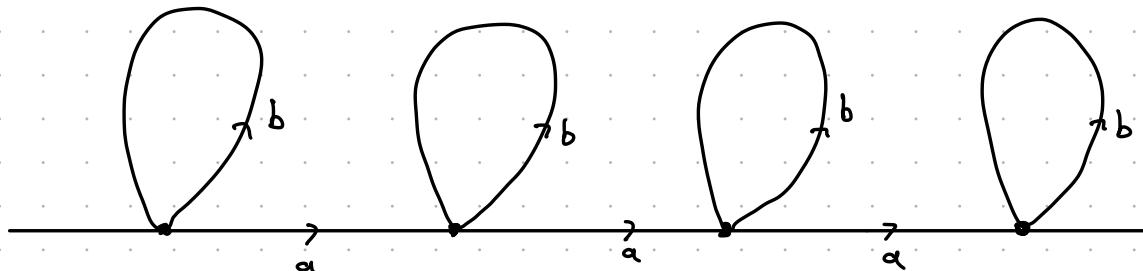
- a in, a out
- b in, b out

\Rightarrow homeomorphism type explains the 4 products...

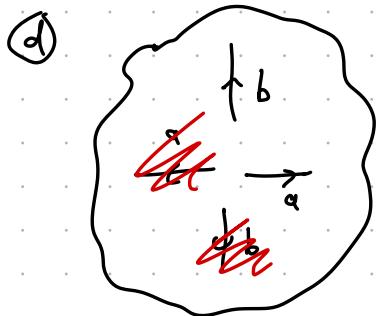
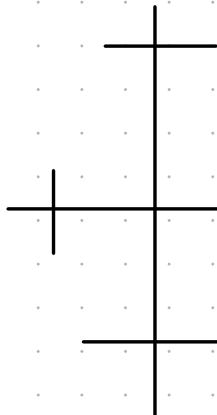
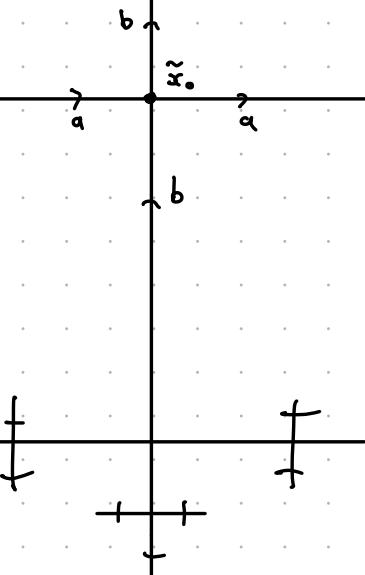
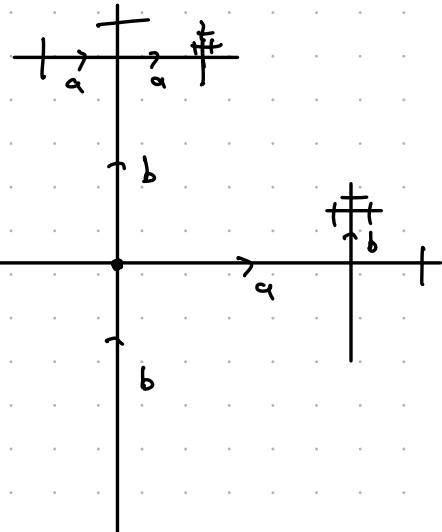
(b)



(c)



b in b out
a in
a out } each pt homeomorphic
... it works!



This has no loops in it \Rightarrow simply connected

Example of a simply connected covering space of the figure 8

\hookrightarrow can map finite & infinite to get

Given $p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$ a general covering map,
want to define a map

$$\phi: \{\text{loops at } x_0\} \rightarrow p^{-1}(x_0) \subset \tilde{X}$$

say $\gamma: [0, 1] \rightarrow (X, x_0)$ loop.

\because loop, there is a unique lift $\tilde{\gamma}: [0, 1] \rightarrow (\tilde{X}, \tilde{x}_0)$
s.t. $\tilde{\gamma}(0) = \tilde{x}_0$

$$p \circ \tilde{\gamma} = \gamma$$

← get /
again
projection

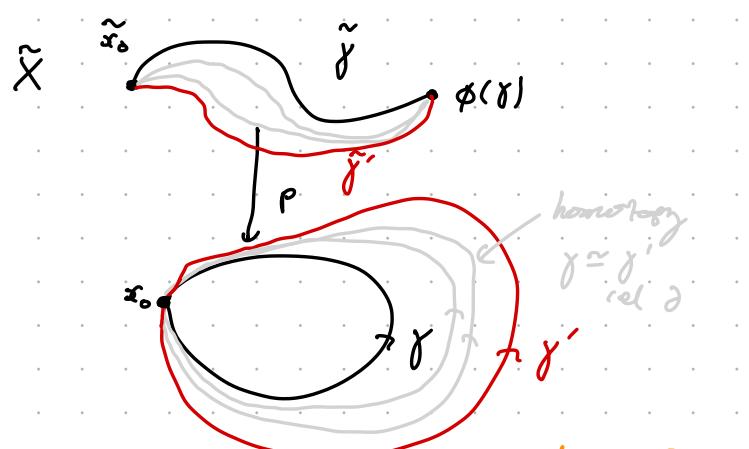
$$\text{Define } \phi(\gamma) = \tilde{\gamma}(1)$$

Note: If $\gamma' \simeq \gamma$ rel ∂ ,
Then γ' are do one lift

$$\tilde{\gamma}' \simeq \tilde{\gamma} \text{ rel } \partial$$

$$\Rightarrow \tilde{\gamma}(0) = \tilde{\gamma}'(0) \text{ & } \tilde{\gamma}(1) = \tilde{\gamma}'(1)$$

$$\text{In particular, } \phi(\gamma') = \tilde{\gamma}'(1) = \tilde{\gamma}(1) = \phi(\gamma)$$



Defined operation on
loops of actually
well defined on
homotopy classes of
loops!

consider that ϕ is well defined on homotopy classes of loops, so have

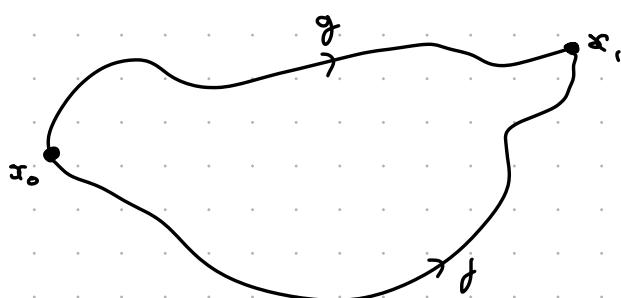
loop \rightarrow lift it \rightarrow value at end pt?

$$\phi: \underbrace{\pi_1(X, x_0)}_{\text{group}} \longrightarrow \underbrace{\rho^{-1}(x_0)}_{\text{set}}$$

Thm: Given a covering $\rho: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0)$. If \tilde{X} is path connected, then ϕ is surjective. If \tilde{X} is simply connected, then ϕ is bijective.

[Hence ϕ is bijective, ρ_n are surjective]

Lemma: If \tilde{X} is simply connected, if f, g are paths in \tilde{X} from \tilde{x}_1 to \tilde{x}_2 . Then f, g are homotopic rel \tilde{x}_1 .



Proof: Consider the path

$$f \cdot \bar{g} \cdot \bar{g}$$

this first ↘

$$\Rightarrow (f \cdot \bar{g}) \cdot g \stackrel{\delta}{\sim} f \cdot (\bar{g} \cdot g)$$

in
trivial
by
homotopy

$$\stackrel{\delta}{\sim} f \cdot e_{x_2}$$

$$\stackrel{\delta}{\sim} e_{x_1} \cdot g \stackrel{\delta}{\sim} f$$

$$\stackrel{\delta}{\sim} g$$

$$\Rightarrow g \stackrel{\delta}{\sim} f$$

Proof of Thm:

Case ①: Assume \tilde{X} is path connected.

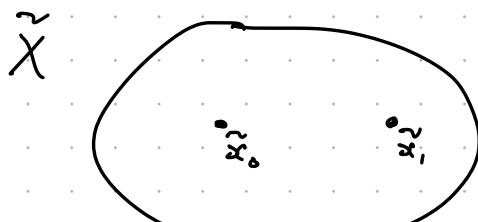
$$\text{say } \rho(\tilde{x}_0) = x_0$$

let \tilde{f} be a path from \tilde{x}_0 to \tilde{x}_1

$$\text{let } \rho \circ \tilde{f} = f$$

f is a loop (w/ lift \tilde{f})

$$\phi(f) = \tilde{f}(1) = \tilde{x}_1 \leftarrow \text{proves surjectivity}$$



Case ②: Assume \tilde{X} is simply connected. WTS ϕ bijective

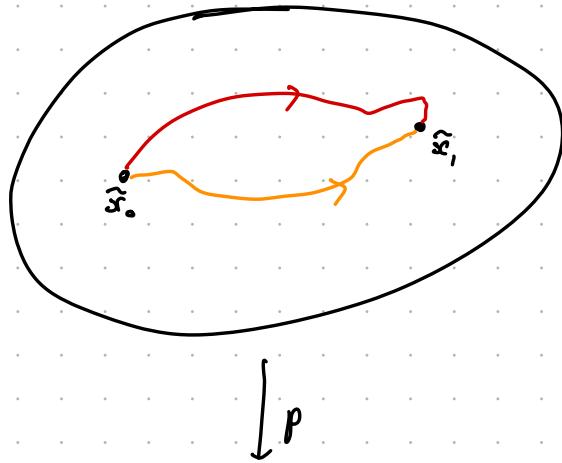
$$\text{say } \phi(f) = \phi(f')$$

Since \tilde{X} simply connected
 Lemma $\Rightarrow \tilde{\gamma} \cong \gamma'$

Project the homotopy by ρ

$$\Rightarrow \gamma \cong \gamma'$$

$$\Rightarrow [\gamma] = [\gamma']$$



Prop: $\pi_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$

Proof: $\rho: S^2 \rightarrow \mathbb{RP}^2$ is a covering of degree 2.

$\pi_1(S^2) = \{\text{id}\} \therefore S^2$ is simply connected.

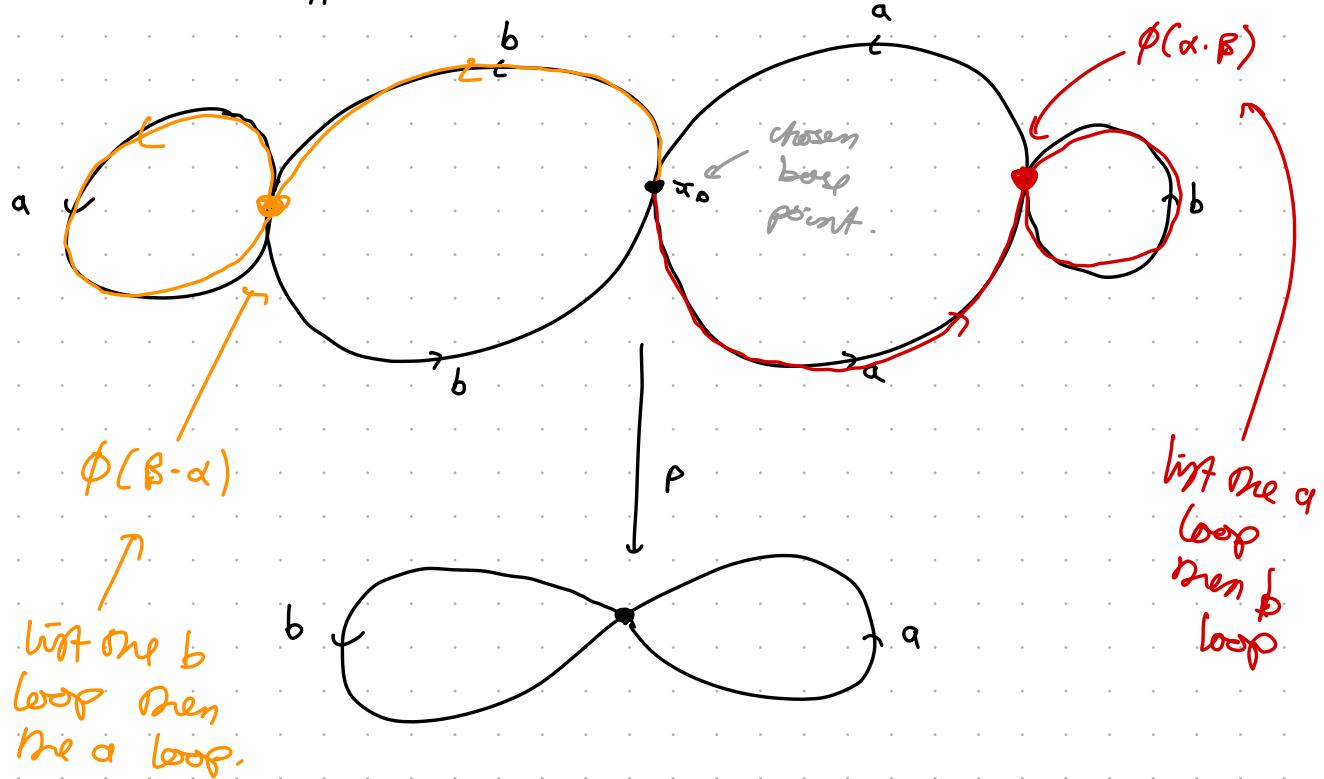
We showed that in this case, ρ is a bijection
 $\phi: \pi_1(\mathbb{RP}^2) \rightarrow \rho^{-1}(\{x_0\})$

We conclude that $\pi_1(\mathbb{RP}^2)$ has 2 elements,

There is a unique group w/ two elements, $\mathbb{Z}/2\mathbb{Z}$

Prop: $\pi_1(\infty, x_0)$ is non-abelian

Proof:



consider the loops $\alpha: [0, 1] \rightarrow \text{Oa}$ parametrizing the right loop & $\beta: [0, 1] \rightarrow \text{Ob}$ parametrizing the left loop.

WTS $[\alpha] \cdot [\beta] \neq [\beta] \cdot [\alpha]$ [elements in Π , doesn't commute]

Since $[\alpha] \cdot [\beta] = [\alpha \cdot \beta]$ suffices to show

$$[\alpha \cdot \beta] \neq [\beta \cdot \alpha]$$

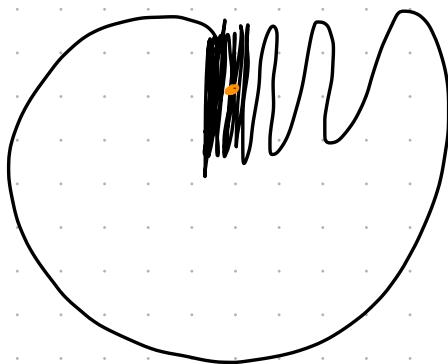
compute $\phi(\alpha \cdot \beta)$ & $\phi(\beta \cdot \alpha)$

compute $\phi(\alpha \cdot \beta) \neq \phi(\beta \cdot \alpha)$ from computations.

But ϕ depends only on homotopy class rel ∂

$$\Rightarrow [\alpha \cdot \beta] \neq [\beta \cdot \alpha]$$

we say that a space (X, \mathcal{R}) is locally path connected if for any $x \in X$, and open set U containing x , then there is an open path connected set B with $x \in B \subset U$.



Topologist's sine curve.

path connected
but not locally
path connected.

This point - a local
neighbourhood of - will
not be locally path
connected.

This is equivalent to saying that the collection \mathcal{B} of path connected open sets B is a basis for the topology.

$$U = \bigcup_{j \in J} B_j \quad \{B_j\}_{j \in J} \quad B_j \in \mathcal{B}$$

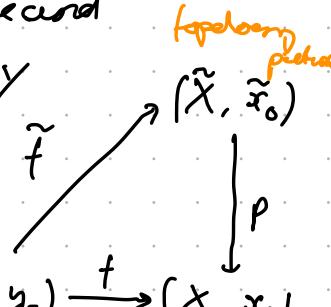
Lifting criterion

sometimes the lift exists!
sometimes it does not exist.

Def: Let $p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$ be covering space and $f: (Y, y_0) \rightarrow (X, x_0)$ a map w/ Y path connected & locally path connected.

Then a lift $\tilde{f}: (Y, y_0) \rightarrow (\tilde{X}, \tilde{x}_0)$

exists iff $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x}_0))$ $(Y, y_0) \xrightarrow{f} (X, x_0)$



Take γ fibre curve of circle
 X circle
 \tilde{X} helix

no map from ~~finite~~ finite
 cover to \mathbb{P}^1 ?

Q: maps of fundamental groups:

$$\begin{array}{ccc} & \pi_1(\tilde{X}, \tilde{x}_0) & \\ \tilde{f}_* \nearrow & & \downarrow p_* \\ \pi_1(Y, y_0) & \xrightarrow{f_*} & \pi_1(X, x_0) \end{array}$$

algebraic question
 resolves the
 problem...

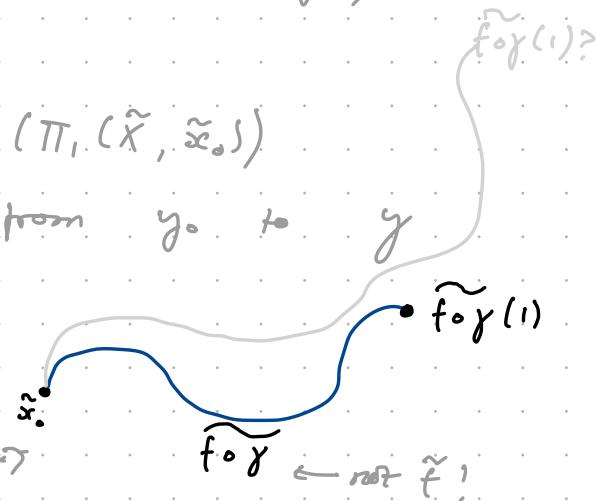
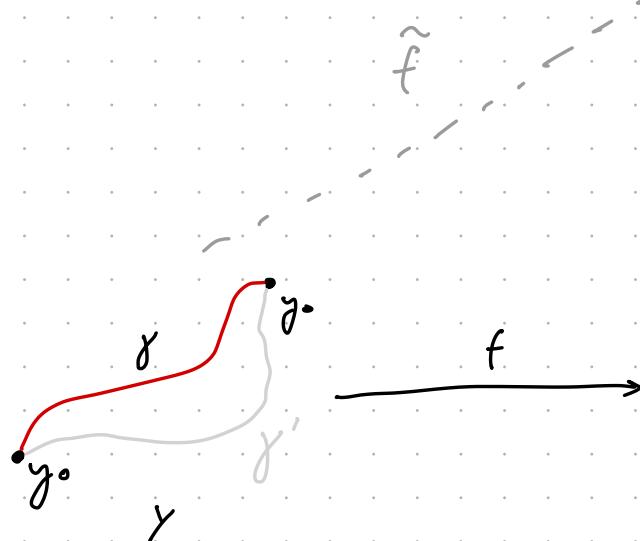
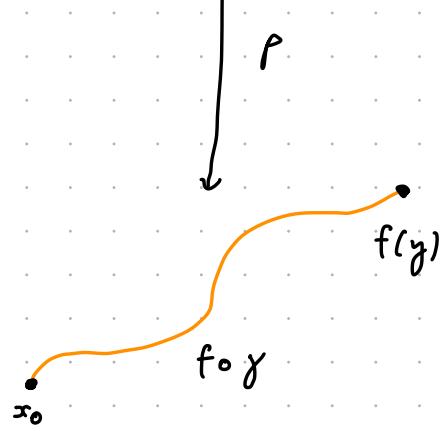
Proof: \Rightarrow
 If the lift \tilde{f} exists,
 $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) \supset p_*(\tilde{f}_*(\pi_1(Y, y_0))) = f_*(\pi_1(Y, y_0))$

\Leftarrow want to construct f_* now.

Assume $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x}_0))$

Let $y \in X$, say γ path from y_0 to y

If \tilde{f} existed, it would
 be equal to $f \circ \gamma$ by
 uniqueness of path lifting



so $\tilde{f}(1)$ would be $\tilde{f} \circ \tilde{g}(1)$, in particular, we have uniqueness (some endpoints)

→ just need to show existence now.

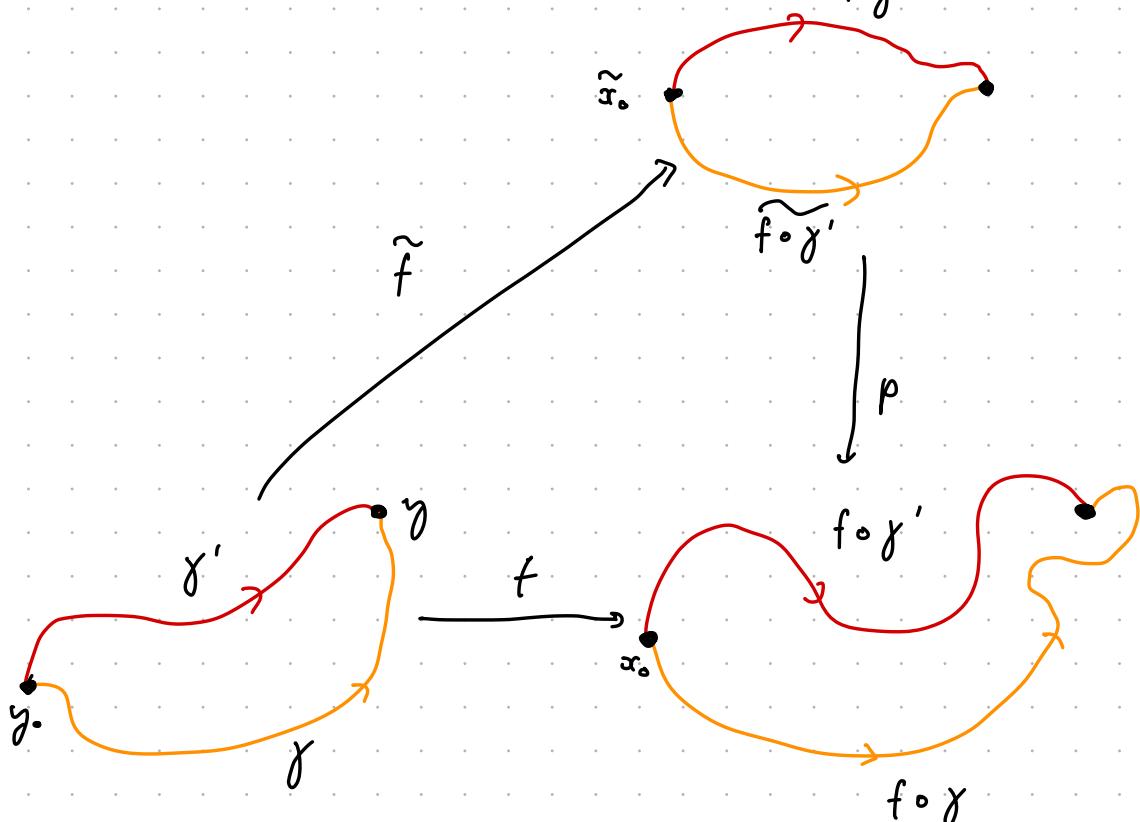
Define $\tilde{f}(y) = \tilde{f} \circ \tilde{g}(1)$.

In order to make the definition, need to check that $\tilde{f} \circ \tilde{g}(1)$ is independent of \tilde{g} ← just chosen to be some path...

let \tilde{g}' be a second path from y_0 to y .
WTS $\tilde{f} \circ \tilde{g}'$ doesn't lift somewhere else!

consider the loop $\tilde{g}' \cdot \tilde{g}$, it's a loop so by hypothesis, the loop $(\tilde{f} \circ \tilde{g}')(1) \cdot (\tilde{f} \circ \tilde{g})(1)$ is in the image of $P_*(\Pi, (\tilde{X}, \tilde{x}_0))$

From last meet, we know $(\tilde{f} \circ \tilde{g}')(1) \cdot (\tilde{f} \circ \tilde{g})(1)$ lifts to a loop in (\tilde{X}, \tilde{x}_0) . $\tilde{f} \circ \tilde{g}$



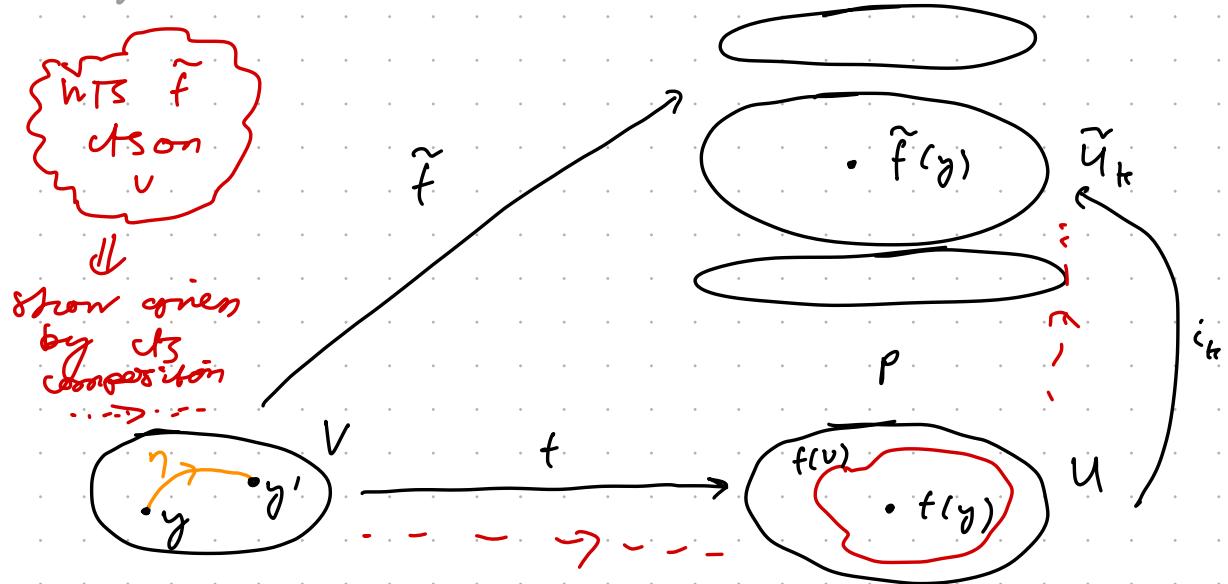
The endpoints of $\tilde{f} \circ \tilde{g}$ are the same as $\tilde{f} \circ \tilde{g}'$

$$\{\tilde{x}_0, \tilde{f} \circ \tilde{g}(1)\} = \{x_0, \tilde{f} \circ \tilde{g}'(1)\}$$

so $\tilde{f} \circ \tilde{g} = \tilde{f} \circ \tilde{g}' \Rightarrow$ consistent way to define the

tip \tilde{f} that doesn't depend on the path.

Finally, need to show that \tilde{f} is cts.



Let U be a nbhd of $f(y)$ that is evenly covered.

Let

$$P'(U) = \bigcup_{t \in T} U_t \quad \begin{matrix} \leftarrow \\ \text{disjoint} \end{matrix} \quad \begin{matrix} \leftarrow \\ \text{local} \end{matrix} \quad \begin{matrix} \leftarrow \\ \text{union} \end{matrix}$$

Property of covering space, it even covers to U .

Let V be a locally path connected nbhd of y
so that $f(V) \subset U$

Pick $y' \in V$. Using path connectivity, there is a path γ from y to y' .

Now, $i_t \circ f \circ \gamma$ is a lift of $f(\gamma)$ starting at $\tilde{f}(y)$.

Basically, obtain \tilde{f} by f and then i_t .

$$\tilde{f}(y) = i_t(f(y')) \text{ & } f \text{ is cts.}$$

by \tilde{f} is in terms
of lifts. we use a particular
lift

sequences of lifts says
they're the same

$$\text{so } \tilde{f} = i_t \circ f$$

$$\begin{matrix} \uparrow & \uparrow \\ \text{cts} & \text{cts} \end{matrix}$$

composition of cts functions
 $\Rightarrow \tilde{f}$ cts.

Galois Theory of Covering Spaces

Post may draw correspondence between spaces & groups.

Def: let $p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$ & $p': (\tilde{X}', \tilde{x}'_0) \rightarrow (X, x_0)$ be covering spaces. we say p & p' are equivalent if there is a homeomorphism $h: (\tilde{X}', \tilde{x}'_0) \rightarrow (\tilde{X}, \tilde{x}_0)$ so that

$$\begin{array}{ccc} (\tilde{X}, \tilde{x}_0) & \xrightarrow{h} & (\tilde{X}', \tilde{x}'_0) \\ p \searrow & & \swarrow p' \\ (X, x_0) & & \end{array}$$

Eg. the covering spaces of the figure 8 are equivalent if there is a homeomorphism h between them preserving

- discrete
- label
- basepoint

geometric idea

Prop: If X is path connected locally, then covering spaces, then covering spaces $p: \tilde{X} \rightarrow X$ and $p': \tilde{X}' \rightarrow X$ w/ path connected are equivalent iff $p_*\pi_1(\tilde{X}, \tilde{x}_0)$ & $p'_*\pi_1(\tilde{X}', \tilde{x}'_0)$ are equal
algebraic

Missed a while meets...

Universal covering space existence proof...

Prove that \mathbb{C}^* is simply connected...

Monday 27th November 2023

27/11/23

covering space

$$p: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0)$$

Two covering spaces depend on base point.
What if you change base point.

Are these two covering spaces equivalent?

Yes, they are the same. It's a translation by 2. This is a deck transformation.

A deck group acts on the covering space.

In general...

Covering space (\tilde{X}, \tilde{x}_0) & (\tilde{X}, \tilde{x}_1) are equivalent

$$\Leftrightarrow$$

There is a deck transformation $\tau: \tilde{X} \longrightarrow \tilde{X}$ taking \tilde{x}_0 to \tilde{x}_1 .

$$(\tilde{X}, \tilde{x}_0) \xrightarrow{\tau} (\tilde{X}, \tilde{x}_1)$$

$\downarrow p \qquad \downarrow p$

$$(X, x_0)$$

Assume:

- ① X connected
- ② X locally connected
- ③ X locally simply connected

[using the machinery from last week]

①

Prop (for the universal cover $p: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0)$). The deck group is isomorphic to $\pi_1(X, x_0)$ & it acts transitively on $p^{-1}(x_0)$ [group action]

one way to describe universal cover

"Proof": we know $\tilde{X} = \{[\alpha] : \alpha \text{ a path in } X \text{ starting at } x_0\}$

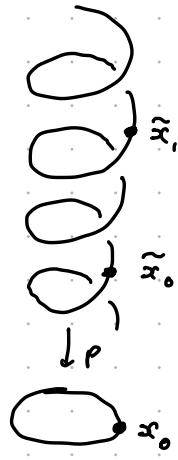
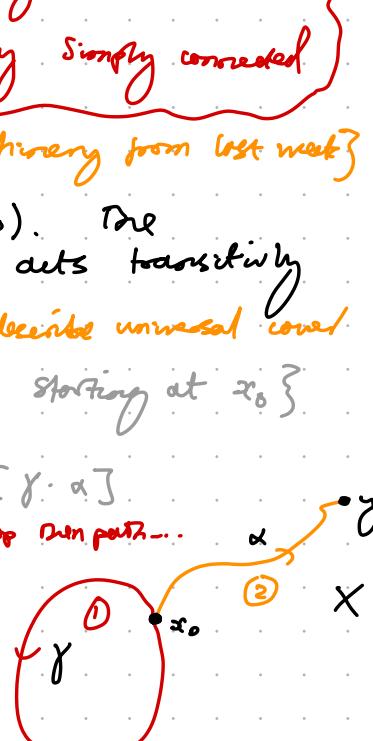
let $[\gamma] \in \pi_1(X, x_0)$. Define $\tau_\gamma([\alpha]) = [\gamma \cdot \alpha]$

$$\boxed{\tau_\gamma \circ \tau_{\gamma'} = \tau_{\gamma \cdot \gamma'}}$$

② Prop: For every subgroup H of $\pi_1(X, x_0)$,
there is a covering space $(\tilde{X}_H, \tilde{x}_0)$ with $\text{im}(p_*(\tilde{X}_H, \tilde{x}_0)) = H$

$$(\tilde{X}_H, \tilde{x}_0) \text{ with } \text{im}(p_*(\tilde{X}_H, \tilde{x}_0)) = H$$

"Proof": Start w/ universal cover $\tilde{X} = \{[\alpha] : \alpha \text{ a path in } X \text{ starting at } x_0\}$
Define equivalence relation on paths.



$\alpha \sim \beta \iff \alpha = h \cdot \beta$ for $h \in H$

$[\alpha] \sim [\beta] \iff [\alpha] = [h \cdot \beta] \text{ for } [h] \in H$

Take $\tilde{X}_H = \tilde{X}/\sim$ [Working at the orbit space!]

③

Prop: Consider a covering space $p_H : (\tilde{X}_H, \tilde{x}_0) \rightarrow (X, x_0)$

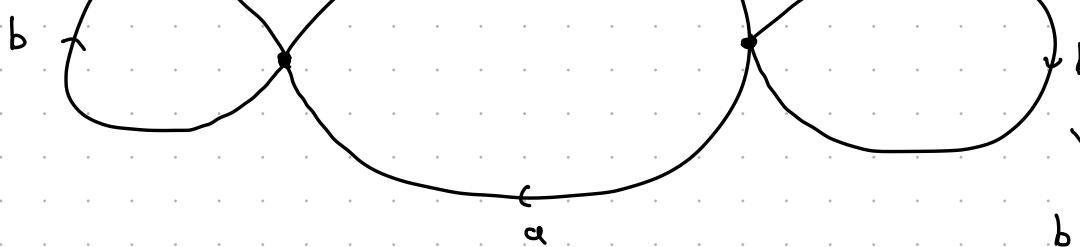
The deck group acts simply transitively on $p_H^{-1}(x_0)$ $\Leftrightarrow H$ is a normal subgroup of $\pi_1(X, x_0)$

Example: consider three covering spaces of ∞

$b \in H_1$

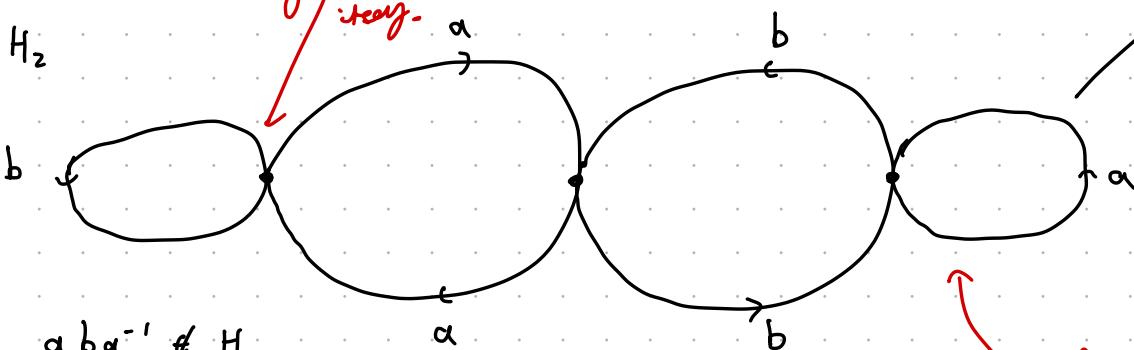
$aba^{-1} \in H$

H_1



Deck group is transitive on vertices

H_2



This vertex can only go to itself.

$aba^{-1} \notin H_2$

$\Rightarrow H_2$ is not normal.

Deck group is trivial.

Not acting transitively on vertices.

Not hard to prove, short course

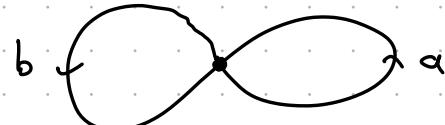
Need to understand what they're saying...

What is $\pi_1(\infty, \cdot)$

free group ??

list: $\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}^2, \dots$

What is a free group?



$\pi_1(\infty)$ is generated by 2 elements a & b .

Let G be some group generated by a and b . How distinguish $\pi_1(\infty)$ from G ?

Say $G = \mathbb{Z}^2$ & $a = (1, 0)$ $b = (0, 1)$

Consider the word $ab\bar{a}\bar{b}$ This is equal to 1 in G [commute in G so can switch around]

Not equal to 1 in $\pi_1(\infty)$

$$ab\bar{a}\bar{b} = 1 \Rightarrow ab = ba \quad \times$$

\mathbb{Z}^2 abelian, $\pi_1(\infty)$ not abelian.

Let S be a set of generators of group G .

A word in S is some finite sequence of letters in $S \cup \bar{S}$ e.g. If $S = \{a, b\}$ word could be $abb\bar{a}ba\bar{b}$

A word w which corresponds to the identity 1 in G is a relation in G .

$w = a\bar{b}\bar{b}a$ formal word
 $w_G = ab\bar{b}\bar{a}$ evaluated in group G

28/11/23

$w = a\bar{a}$ non-formal word
 $w_G = 1$ evaluates to identity in G .

Def: Given a word w in $S \cup \bar{S}$, we call a pair of letters ss in w an inverse pair. E.g.

$$w = a\bar{a}b\bar{b}\bar{b}\bar{a}\bar{a}$$

Def: Two words w & w' are simply equivalent if one can be obtained from the other by inverting a single inverse pair. w, w' equivalent if there is a chain of simple equivalences.

$$w \sim w_1 \sim \dots \sim w_n \sim w'$$

Def: w is reduced if there are no inverse pairs

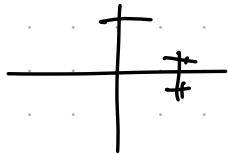
Prop: Every word w is equivalent to a reduced word w_r

Proof: Induction on length. By cancelling pairs, we reduce the length of w equivalent to a word of minimal length. Possibly empty.

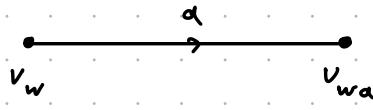
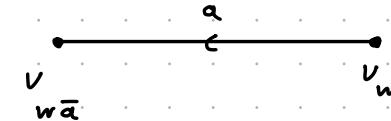
Now: want to build a copy of the universal cover of the figure 8.

let W be the words in (a, b, \bar{a}, \bar{b})

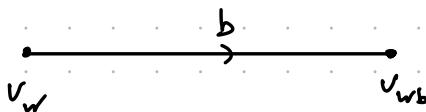
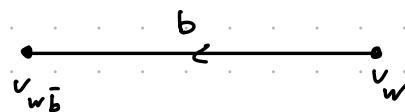
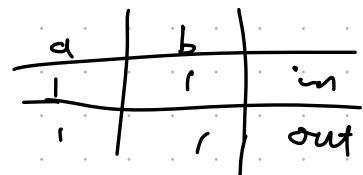
making a graph



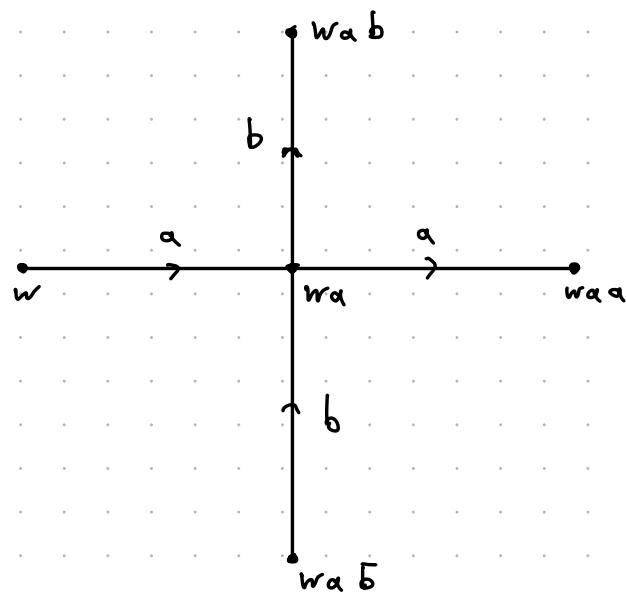
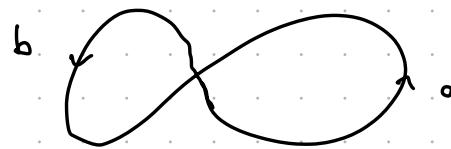
For each reduced word $w \in W$. Assign a vertex v_w .
For each reduced word $w \in W$, we attach an " a "-directed edge



Attach " b "-directed edges in the same way.



claim: Covering of figure 8. WT sheet



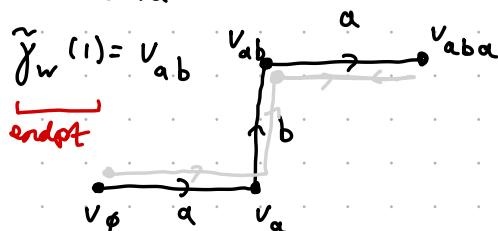
For any word w , reduced or not, there is a path $\tilde{\gamma}_w$ in \mathbb{X} . obtained by following the edges specified by the letters in the specified directions.

let \tilde{X} denote cone on \mathbb{X} . let v_ϕ be the empty base point. $X = \infty$. Such a path $\tilde{\gamma}$ in \tilde{X} has a lift to \mathbb{X} starting at v_ϕ .

Examples

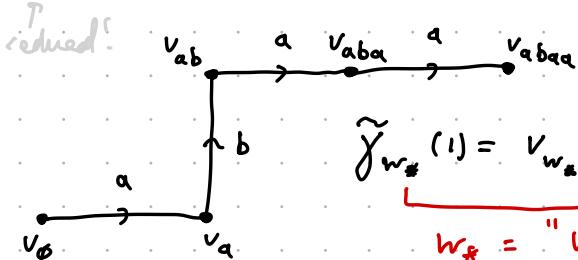
①

$w = abaa\bar{a}$



②

$w_* = abaa\bar{a}$



If w reduced \Rightarrow path w/ no backtracking

$w_* = "w$ reduced"

Prop 1: If w_* is reduced, $\tilde{f}_{w_*}(1) = v_{w_*}$

Prop: Induction

figure 00

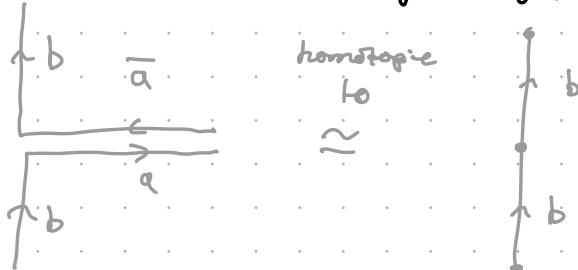
Corollary: If w_* is reduced by not empty, then $\tilde{f}_{w_*} \in \Pi_1(X, x_0)$ is not the identity.

Prop: By homotopy lifting, $\tilde{f}_{w_*}(1)$ is independent of the homotopy class of \tilde{f}_{w_*}

If $\tilde{f}_{w_*} \simeq \text{constant}$, we will have $\tilde{f}_{w_*}(1) = v_\phi$

Prop 2: If $w \sim w'$, then $\tilde{f}_w \simeq \tilde{f}_{w'}$

Prop:



construction elements
in fundamental
group of the
cover of the
figure 8

If w is simply equiv to w'

If w is equiv to w' , get a chain of homotopies.

$$\tilde{f}_w \simeq \tilde{f}_{w_1} \simeq \dots \simeq \tilde{f}_{w_n} \simeq \tilde{f}_{w'} \Rightarrow \tilde{f}_w \simeq \tilde{f}_{w'}$$

Prop 3: If $\tilde{f}_w \simeq \tilde{f}_{w'}$, then $w \sim w'$ [equivalent]
non-~~var...~~ depends where you cancel pairs...

Prop: Have ~~seen~~ seen w & w' each equiv. to reduced words w_* & w'_*

It follows that $\tilde{f}_{w_*} \simeq \tilde{f}_w \simeq \tilde{f}_{w'} \simeq \tilde{f}_{w'_*}$
homotopy assumption

If we lift the loops. $\tilde{f}_{w_*} \simeq \tilde{f}_{w'_*}$ are homotopic rel ∂ as pairs. So

$$v_{w_*} = \tilde{f}_{w_*}(1) = \tilde{f}_{w'_*}(1) = v_{w'_*}$$

so

$$w \sim w_* = w'_* \sim w' \Rightarrow w \sim w'$$

equivalent

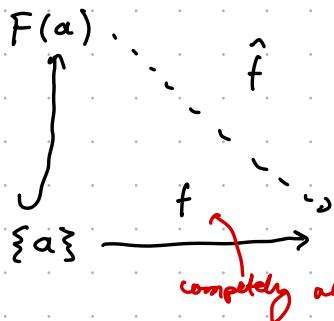
Made

Let $F(S)$ be a group where S is a set of generators for $F(S)$.

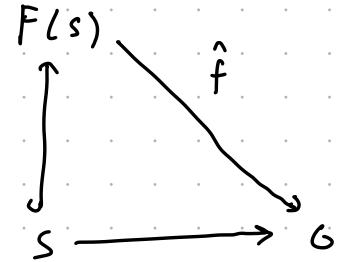
The group $F(S)$ is a free group generated by S for any group G & set map $f: S \rightarrow G$, f extends to a homeomorphism $\hat{f}: F \rightarrow G$ uniquely.

Examples

①



(free abelian groups by G restricted to abelian)



The infinite cyclic group generated by $\{a\}$ is the free group $F(a)$ $\{a^n : n \in \mathbb{Z}\}$

When is a word a relation in the group? Evaluated in G & Id_G .

One way of viewing free groups is they have no minimal # relations! Say $w \in S \cup \bar{S}$ a word w gives an element w_F in the free group [evaluate in free group] $w = abba\bar{a}$. w also gives an element w_G in G if

$$w_G = f(a)f(b)f(a)f(a)f(\bar{a}) \in G$$

$$w_F = 1$$

$$\text{Then } \hat{f}(w_F) = \hat{f}(1) = 1 \text{ so } w_G = 1$$

$$\hat{f}(w_F) = w_G$$

Free groups are the minimal # of relations to make it a group

Only one identity
 $\mathbb{Z}/n\mathbb{Z}$

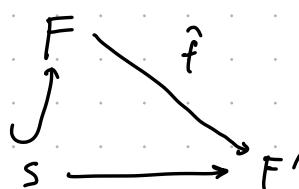
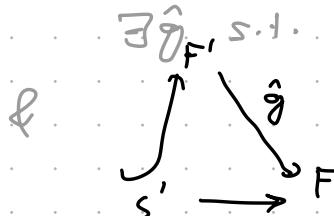
$ng = 1 \rightarrow$ lots of relations

Prop:

Say that $F(S)$ & $F(S')$ are free groups, generated by sets with $\#S = \#S'$. A bijection $h: S \rightarrow S'$ determines a unique isomorphism $f: F(S) \rightarrow F(S')$ taking $s \in S$ to $h(s) \in S'$.

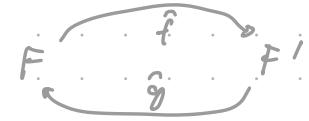
reversed in reverse...

Proof:



$$g(S') = h^{-1}(S')$$

WANT



considers $\hat{g} \circ \hat{j}$

$$\hat{g} \circ \hat{j}(s) = s$$

Uniqueness of \hat{g} $\Rightarrow \hat{g} \circ \hat{f} = \text{Id}_F$

$$\text{f} \circ \text{g} = \text{Id}_F.$$

Forced definition

atom...

WTF is going on!

Conclusion: Any two free groups (generated by two elements a & b) are isomorphic.

We've described its properties & they are consistent. But, does it even exist???

A free abelian group does exist.

Does the free group $F(a, b)$ exist? Is there a group that satisfies these properties???

Prop: $\Pi, (\infty, \circ_0)$ is the free group generated by $\{a, b\}$.

We've invented this abstract definition that exactly describes this group!

Proof: Say we have a group G & a pair of elements, $\alpha, \beta \in G$. We need to show that there is a unique homomorphism $\hat{f}: \Pi, (\infty) \longrightarrow G$ with $\hat{f}(a) = \alpha$, $\hat{f}(b) = \beta$. [a, b are two loops] $y \in a b a b b$

Given $w \in \Pi, (\infty)$, we can write w as some word w in a & b . $w = w_{\Pi, (\infty)}$ [evaluated in the group]

Define $h(w) = w_G$

$$h(w) = w_G = \underbrace{\alpha \beta \alpha \beta \beta}_{\text{evaluated in } G}$$

What if we chose a different w' w/ $w = w'_{\Pi, (\infty)}$

WTS w doesn't depend on word choice.

If $w \in \Pi, (\infty)$ is represented by two words w & w' , & $w \simeq w$ & $w \simeq w'$, PROP 3 $\Rightarrow w \sim w'$ so $w \sim w \sim \dots \sim w \sim w'$. equivalent to

But, if $w_j \sim w_{j+1}$ is a simple equivalence, then

$$(w_j)_G = (w_{j+1})_G$$

$$w_j = \alpha \beta \alpha \bar{\alpha} \beta$$

$$w_{j+1} = \alpha \beta \alpha \bar{\alpha} \beta$$

When you evaluate the word, the inverse pair evaluates trivially.

\hat{f} def is well defined

In general \hat{f} is well defined & uniquely determined.
wood $(a, b) \xrightarrow{\alpha \beta}$ score.

\hat{f} is a homomorphism \therefore you stack woods together
& you get composition.

What have we gained? $\Pi_1(\infty)$ is the free group on
two generators.

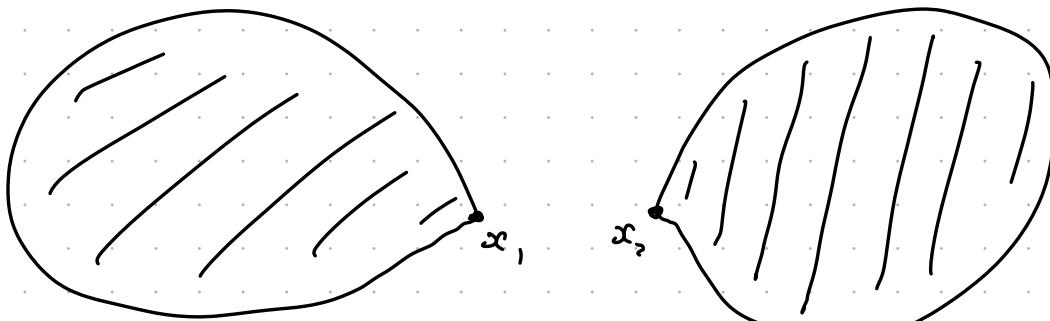
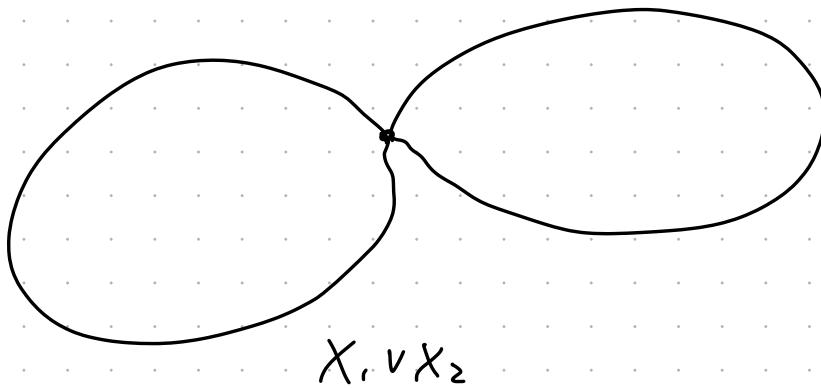
$\Pi_1(\infty)$ is reduced woods. Take a wood, reduce & it
is unique.

Fundamental group of figure ∞ & algebra \mathbb{Q} of
free group of 2 generators works like reduced woods.

Fundamental def \longrightarrow positive outcome!

say that (X_1, x_1) & (X_2, x_2) are pointed topological spaces. 4/12/23

Define $X_1 \vee X_2$ to be $X_1 \sqcup X_2 \xrightarrow{x_1 \sim x_2}$ w/ basepoint $x_1 = x_2$



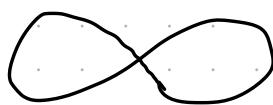
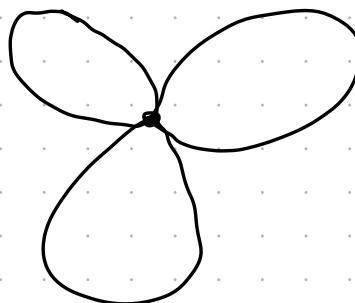
Example

$$S' \vee S' = \infty$$

If we have a collection of spaces induced by α

$$\bigvee X_\alpha = \bigsqcup_\alpha X_\alpha / \sim \quad \text{where } x_\alpha \sim x_{\alpha'} \text{ if } \alpha, \alpha'$$

The wedge of n circles is the rose w/ n petals



...

The fundamental group of the rose w/ n petals is the free group on n generators.

What about the rose w/ infinitely many petals?

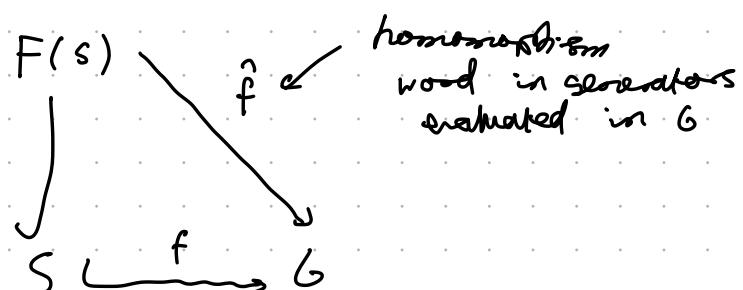
Random shit about mate topology. (W complex...)

Let G be a group w/ generating set S
[$\forall g \in G \quad g = s_1, s_2, s_3, \dots, s_n$ (a word in S)]

$F(S)$

Γ

Set of all
reduced words
on elements
of S
free group



By properties of free groups, there is a homomorphism

$$f(w) = w_G$$

reduced word evaluated in

G

$$w = g_1^{n_1} \cdots g_m^{n_m}$$

$w_G = \text{multifacet}$

Since s generates G , f is surjective

$$N \xrightarrow{\quad} F(s) \xrightarrow{\hat{f}} G$$

$$N = \ker(\hat{f})$$

N is a normal subgroup.

The elements of N are relations in G that map to the identity. N is called the relation subgroup.

The 1st isomorphism theorem $\Rightarrow G$ is isomorphic to $F(s)/N$

$$G \cong \frac{F(s)}{N}$$

so describing N tells us what G is.

How to describe N ?

A set $R \subset N$ normally generates N if the elements of R & all their conjugates generate N .

R is called a complete set of relations.

G is determined by a set of generators

s_1, \dots, s_n & a complete set of relations r_1, \dots, r_m .

we write

$$G = \langle \underbrace{s_1, s_2, \dots, s_n}_{\text{generators}} \mid \underbrace{r_1, \dots, r_m}_{\text{relations}} \rangle$$

Examples $\mathbb{Z}/n\mathbb{Z} = \langle a \mid a^n \rangle$

$$\mathbb{Z} = \langle a \rangle$$

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

$$\text{Dihedral} = \langle a, b \mid a^2 = b^2 = (ab)^n = 1 \rangle$$

$$= \langle a, b \mid a^2 = 1, b^n = 1, aba^{-1} = b^{-1} \rangle$$

2nd last lecture

5/12/23

In this setting, there is a covering space \tilde{X}_n of the figure 8 $S^1 \vee S^1$.

$$N \longrightarrow F(a, b) \longrightarrow G$$

$$F(a, b) / N \cong G$$

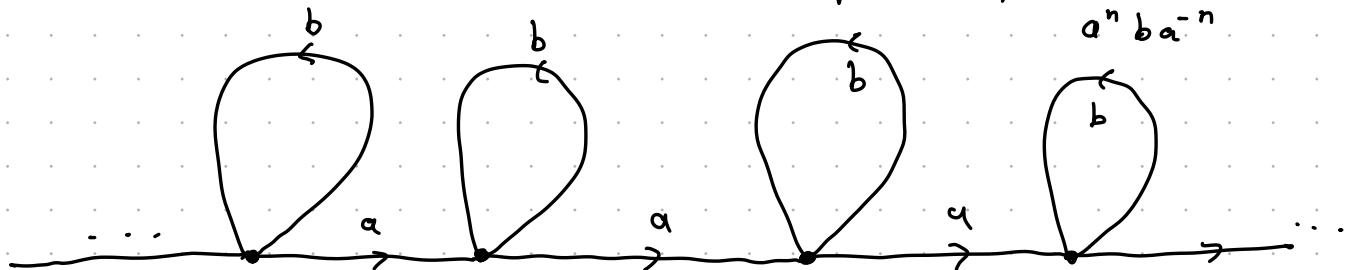
Example 1

$$G = \langle a, b \mid b = 1 \rangle$$

What does \tilde{X}_n look like? N contains all conjugates of b in particular,

$$aba^{-1}$$

$$a^nba^{-n}$$

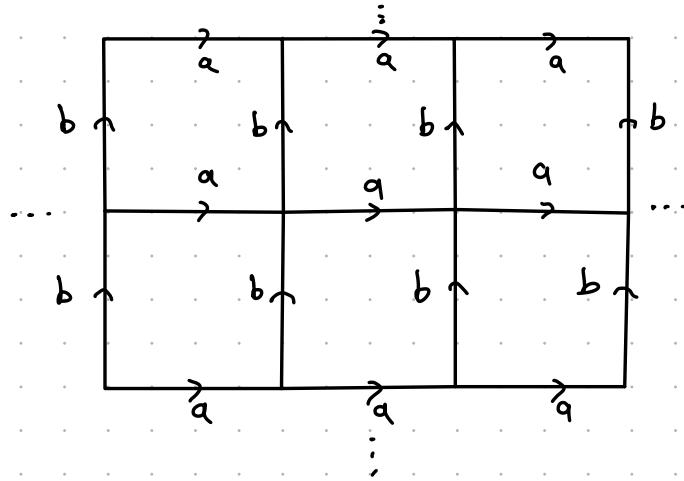


Dehn group acts transitively on vertices. Any vertex can be taken to any other vertex.
Dehn group on covering spaces.

Example 2

$$(aba^{-1}b^{-1} = 1)$$

$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$$



$$N = \mathbb{Z}^2$$

Dehn group is translation

Van Kampen's Thm tells us how to derive the fundamental group of a space in terms of pieces of the space.

case 1: $X = U_1 \cup U_2$ where U_1, U_2 path connected and $U_1 \cap U_2$ is simply connected.

$$\text{Then } \pi_1(X) = \pi_1(U_1) * \pi_1(U_2)$$

Free product of Groups

say $F = \langle g_1, \dots, g_n \mid r_1, \dots, r_m \rangle$

$F' = \langle g'_1, \dots, g'_{n'} \mid r'_1, \dots, r'_{m'} \rangle$

Define $F * F' = \langle g_1, \dots, g_n, g'_1, \dots, g'_{n'} \mid r_1, \dots, r_m, r'_1, \dots, r'_{m'} \rangle$

Examples

$$\mathbb{Z} * \mathbb{Z} = \langle a \rangle * \langle b \rangle = \langle a, b \rangle$$

$$\{\mathbb{Z}\} = \{\mathbb{Z}\} * \{\mathbb{Z}\} \quad \langle \rangle = \langle \rangle * \langle \rangle$$

Example $\pi_1(S^1 \vee S^1) = \pi_1(S^1) * \pi_1(S^1) = \mathbb{Z} * \mathbb{Z}$

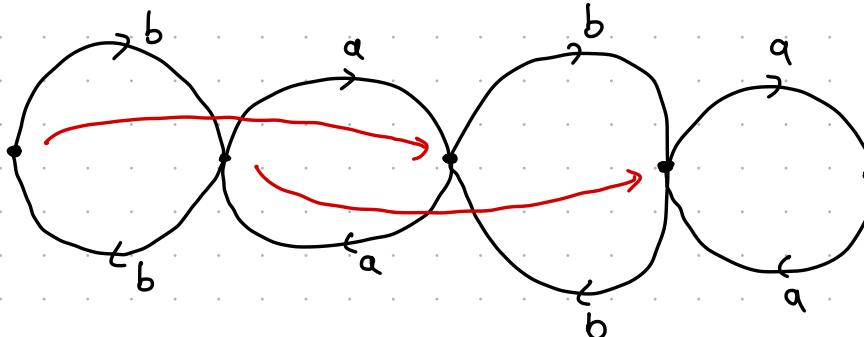
$$\pi_1(S^n) = \{\mathbb{Z}\} \quad n \geq 3$$

$$\pi_1(\mathbb{RP}^2 \vee \mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$$

What does the Cayley graph of $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ look like?

$$\langle a, b \mid a^2 = b^2 = 1 \rangle$$

Done!



Delet group is any map that preserves labels & directions
so $\mathbb{Z} = \mathbb{Z}/2\mathbb{Z}$

Delet group contains $ab, ba = (ab)^{-1}$

Cayley Graph of $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$ [Hatcher p. 78]

Groups G, G', H & homeomorphism $f: H \rightarrow G, f': H \rightarrow G'$

say $G = \langle g_1, \dots, g_n \mid r_1, \dots, r_m \rangle, G' = \langle g'_1, \dots, g'_{n'} \mid r'_1, \dots, r'_{m'} \rangle$

& H has generators h_1, \dots, h_p . Then

$G *_{H'} G' = \langle g_1, \dots, g_n, g'_1, \dots, g'_{n'} \mid r_1, \dots, r_m, r'_1, \dots, r'_{m'}, f(h_1) = f'(h_1), \dots, f(h_p) = f'(h_{p'}) \rangle$

Note, $G +_H G'$ depend on $f \& f'$ even though they don't appear

Van Kampen Thm

If $X = U \cup U_2$, U, U_2 open in X , $U \cap U_2$ path connected, then

$$\pi_1(X) = \pi_1(U) *_{\pi_1(U \cap U_2)} \pi_1(U_2)$$

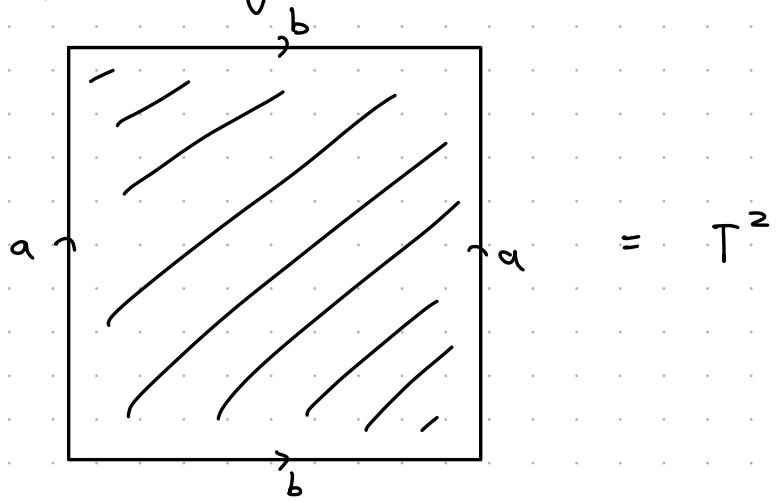
maps given by

$$\pi_1(U) \xleftarrow{(\tau_1)_*} \pi_1(U \cap U_2) \xrightarrow{(\tau_2)_*} \pi_1(U_2)$$

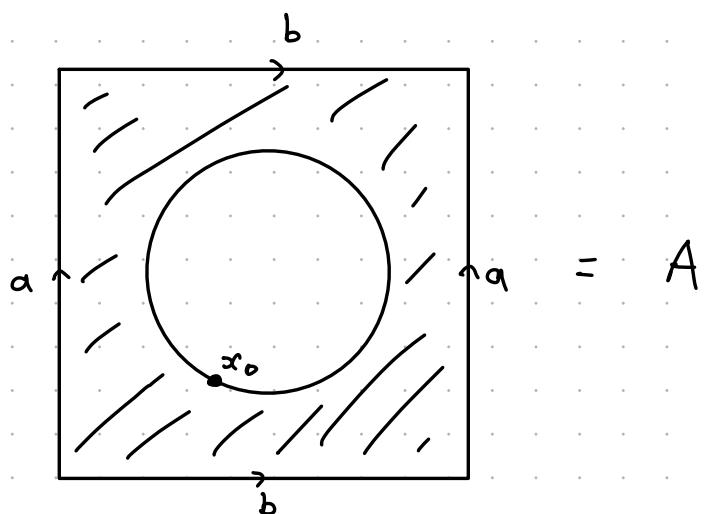
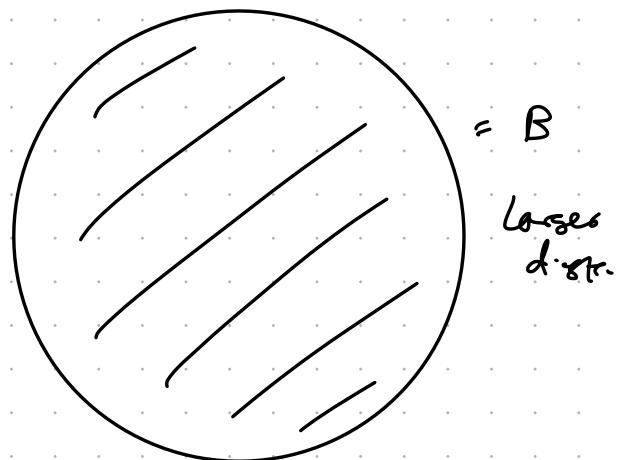
(lecture 25)

Applications of Van Kampen to the Tores

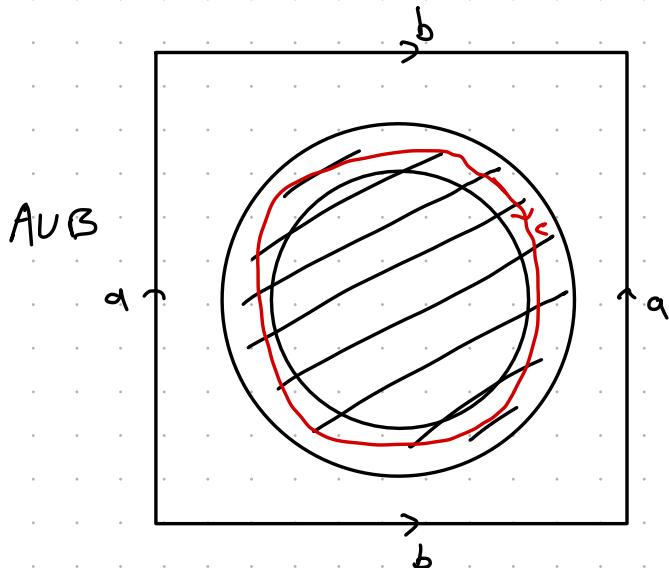
5/12/23



Remove a disk



is homotopic to figure 8 $b \circ a$

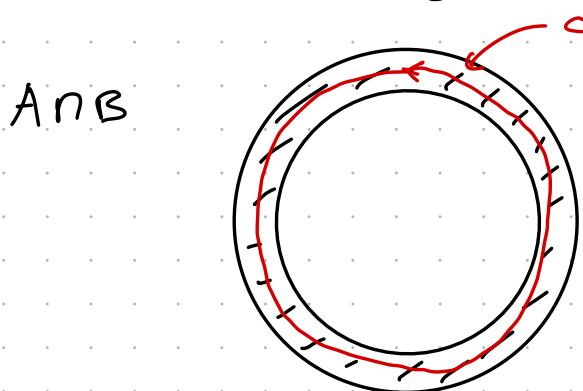


$$\text{S} = \text{S}$$

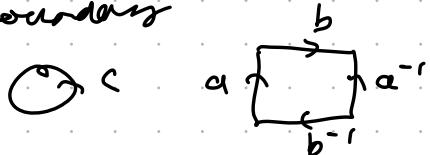
$A \cup B$ covers
the four
regions

$$\bar{J}^2 = A \cup B$$

$$x_0 \in A \cap B$$



C loop moves to boundary



$$\begin{aligned} \pi_1(A) *_{\pi_1(A \cap B)} \pi_1(B) &= \langle a, b \mid f_x(c) = f_x'(c) \rangle \\ &= \langle a, b \mid a b a^{-1} b^{-1} = 1 \rangle \\ &\text{amalgamated} \end{aligned}$$

presentations for the toons.

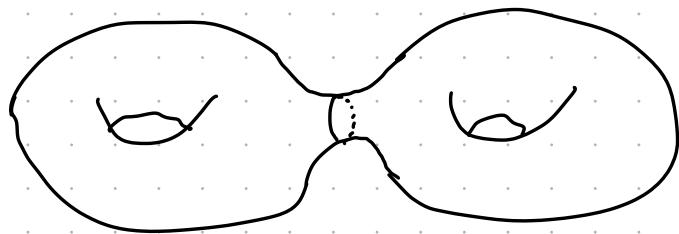
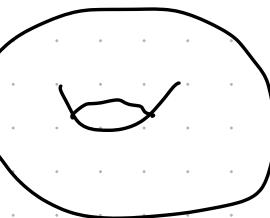
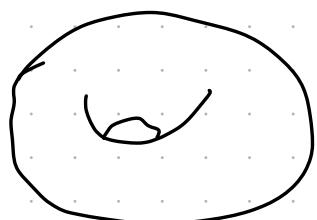
$$a, b \mid f_x(c) = f_y'(c) >$$

$$= \langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$$

amalgimated

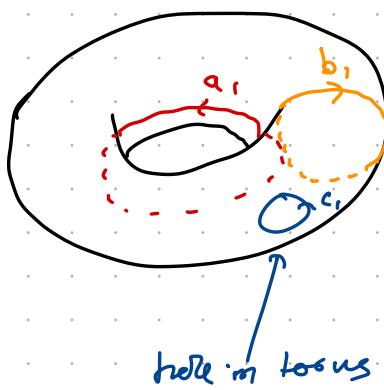
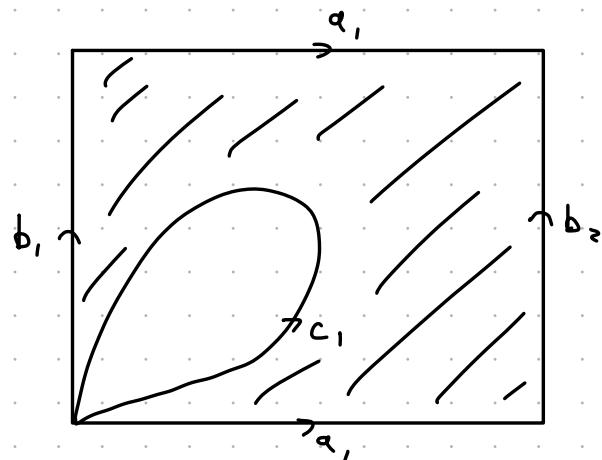
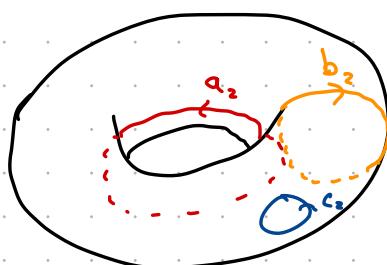
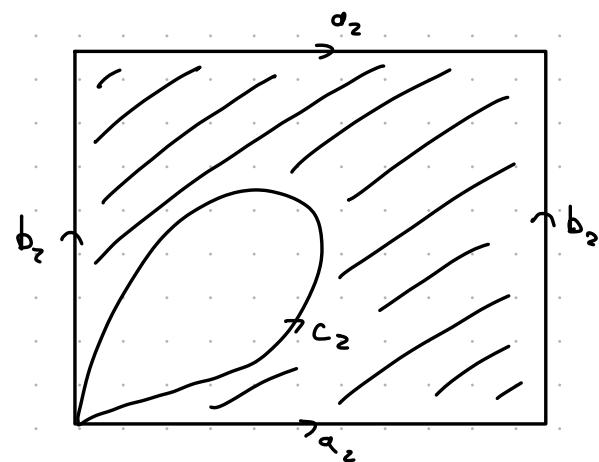
presentations for
the Toons.

Surface of Genus 2

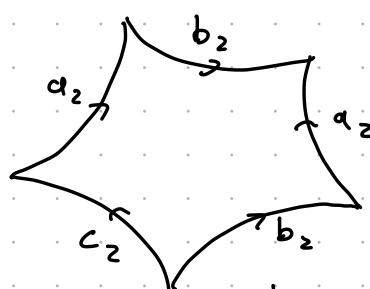
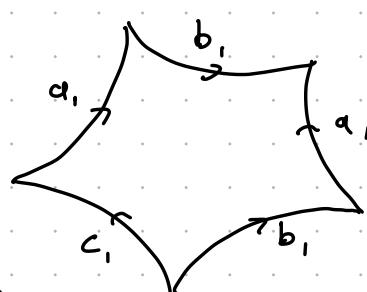
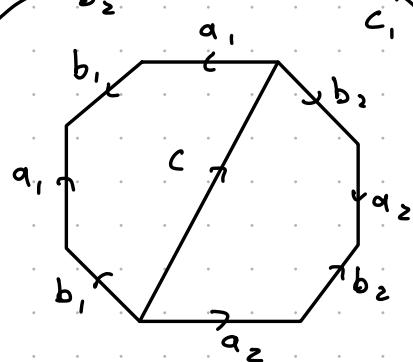
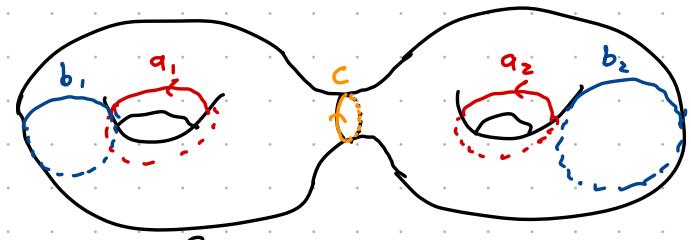


$$= M_2 \quad [\text{genus}]$$

Generators a_1, b_1 horizontal & vertical

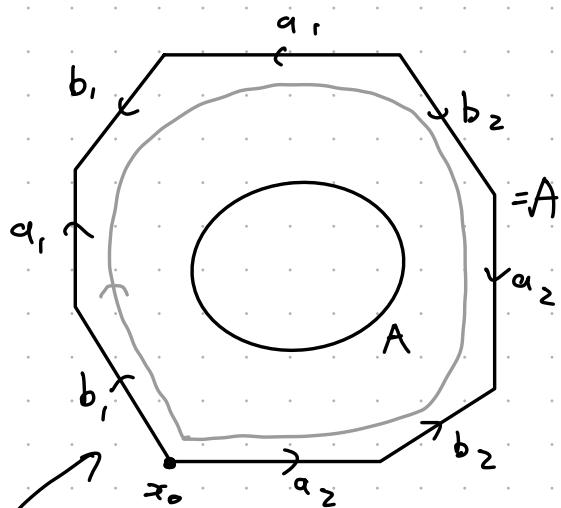


or

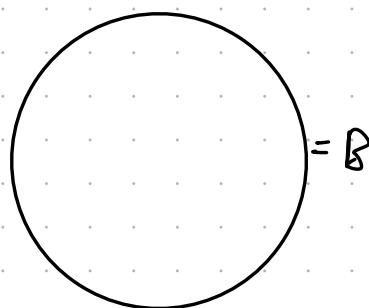
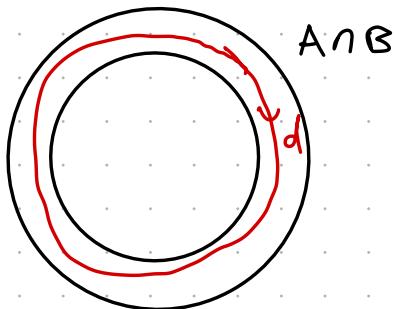


c is used to connect so can ignore it. If you include, you have two darts, want just one!

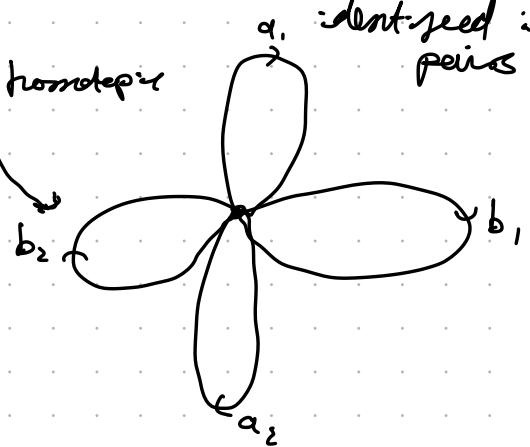
& any combo works...



Use fundamental group theory
Same tactic as before



$\pi_1(A) = \text{free group on 4 generators identified in pairs}$



$\pi_1(A)$

$\pi_1(A \cap B)$

$\pi_1(B)$

$$b_1 a_1 b_1^{-1} a_1^{-1} b_2 a_2 b_2^{-1} b_2^{-1} \longleftrightarrow d \longleftrightarrow \{1\}$$

$$\begin{aligned} \therefore \pi_1(M_2) &= \pi_1(S' \cup S' \cup S' \cup S') *_{\{d\}} \{1\} \\ &= \langle a_1, a_2, b_1, b_2 \mid \underbrace{b_1 a_1 b_1^{-1} a_1^{-1}}_{[\alpha_1, \beta_1]}, \underbrace{b_2 a_2 b_2^{-1} a_2^{-1}}_{[\alpha_2, \beta_2]} = 1 \rangle \\ &\quad \text{commutators} \end{aligned}$$

Thm: If the free group on n generators is isomorphic to the free group on m generators, then $n=m$.

Proof: Consider $F(a_1, \dots, a_n)$

$$\begin{array}{ccc} F(a_1, \dots, a_n) & \xrightarrow{f} & \{0, 1\} \\ \downarrow & & \downarrow \\ a_1, \dots, a_n & \xrightarrow{f} & \{0, 1\} \end{array}$$

Evaluate $\text{Hom}(F(a_1, \dots, a_n), \mathbb{Z}/2\mathbb{Z})$

cardinality of this set of homomorphisms is 2^n .

Prn: For any group G , \exists space X (cw complex)
built by attaching disks to a graph S -t.

$$\pi_1(X) = G$$

Pf: Every group gets a representation. Use that.